Reviewer
Aksiniya Asenova
  • Scientist, Molecular Biology, University of California, Davis
Research fields
  • Microbiology, Molecular Biology
Qualitative and Quantitative Methods to Measure Antibacterial Activity Resulting from Bacterial Competition

In the environment, bacteria compete for niche occupancy and resources; they have, therefore, evolved a broad variety of antibacterial weapons to destroy competitors. Current laboratory techniques to evaluate antibacterial activity are usually labor intensive, low throughput, costly, and time consuming. Typical assays rely on the outgrowth of colonies of prey cells on selective solid media after competition. Here, we present fast, inexpensive, and complementary optimized protocols to qualitatively and quantitively measure antibacterial activity. The first method is based on the degradation of a cell-impermeable chromogenic substrate of the β-galactosidase, a cytoplasmic enzyme released during lysis of the attacked reporter strain. The second method relies on the lag time required for the attacked cells to reach a defined optical density after the competition, which is directly dependent on the initial number of surviving cells.


Key features

• First method utilizes the release of β-galactosidase as a proxy for bacterial lysis.

• Second method is based on the growth timing of surviving cells.

• Combination of two methods discriminates between cell death and lysis, cell death without lysis, or survival to quasi-lysis.

• Methods optimized to various bacterial species such as Escherichia coli, Pseudomonas aeruginosa, and Myxococcus xanthus.


Graphical overview



A New Tool for the Flexible Genetic Manipulation of Geobacillus kaustophilus
Authors:  Ryotaro Amatsu, Kotaro Mori, Shu Ishikawa, Wilfried J. J. Meijer and Ken-ichi Yoshida, date: 09/05/2022, view: 890, Q&A: 0

Geobacillus kaustophilus, a thermophilic Gram-positive bacterium, is an attractive host for the development of high-temperature bioprocesses. However, its reluctance against genetic manipulation by standard methodologies hampers its exploitation. Here, we describe a simple methodology in which an artificial DNA segment on the chromosome of Bacillus subtilis can be transferred via pLS20-mediated conjugation resulting in subsequent integration in the genome of G. kaustophilus. Therefore, we have developed a transformation strategy to design an artificial DNA segment on the chromosome of B. subtilis and introduce it into G. kaustophilus. The artificial DNA segment can be freely designed by taking advantage of the plasticity of the B. subtilis genome and combined with the simplicity of pLS20 conjugation transfer. This transformation strategy would adapt to various Gram-positive bacteria other than G. kaustophilus.


Graphical abstract:




A Modified Fluctuation Assay with a CAN1 Reporter in Yeast
Authors:  Pengyao Jiang, Anja R. Ollodart and Maitreya J. Dunham, date: 06/05/2022, view: 1640, Q&A: 0

Understanding the generation of mutations is fundamental to understanding evolution and genetic disease; however, the rarity of such events makes experimentally identifying them difficult. Mutation accumulation (MA) methods have been widely used. MA lines require serial bottlenecks to fix de novo mutations, followed by whole-genome sequencing. While powerful, this method is not suitable for exploring mutation variation among different genotypes due to its poor scalability with cost and labor. Alternatively, fluctuation assays estimate mutation rate in microorganisms by utilizing a reporter gene, in which Loss-of-function (LOF) mutations can be selected for using drugs toxic to cells containing the WT allele. Traditional fluctuation assays can estimate mutation rates but not their base change compositions. Here, we describe a new protocol that adapts traditional fluctuation assay using CAN1 reporter gene in Saccharomyces cerevisiae, followed by pooled sequencing methods, to identify both the rate and spectra of mutations in different strain backgrounds.

Imaging of Lipid Uptake in Arabidopsis Seedlings Utilizing Fluorescent Lipids and Confocal Microscopy
Authors:  Rosa L. López-Marqués and Thomas G. Pomorski, date: 11/20/2021, view: 2656, Q&A: 0

Eukaryotic cells use a diverse set of transporters to control the movement of lipids across their plasma membrane, which drastically affects membrane properties. Various tools and techniques to analyze the activity of these transporters have been developed. Among them, assays based on fluorescent phospholipid probes are particularly suitable, allowing for imaging and quantification of lipid internalization in living cells. Classically, these assays have been applied to yeast and animal cells. Here, we describe the adaptation of this powerful approach to characterize lipid internalization in plant roots and aerial tissues using confocal imaging.



Graphic abstract:



Fluorescent lipid uptake in Arabidopsis seedlings. Scale bars: seedling, 25 mm; leaf, 10 μm; root, 25 μm.

Measurement of DNA Damage Using the Neutral Comet Assay in Cultured Cells
Authors:  Elena Clementi, Zuzana Garajova and Enni Markkanen, date: 11/20/2021, view: 3009, Q&A: 0

Maintenance of DNA integrity is of pivotal importance for cells to circumvent detrimental processes that can ultimately lead to the development of various diseases. In the face of a plethora of endogenous and exogenous DNA damaging agents, cells have evolved a variety of DNA repair mechanisms that are responsible for safeguarding genetic integrity. Given the relevance of DNA damage and its repair for disease pathogenesis, measuring them is of considerable interest, and the comet assay is a widely used method for this. Cells treated with DNA damaging agents are embedded into a thin layer of agarose on top of a microscope slide. Subsequent lysis removes all protein and lipid components to leave ‘nucleoids’ consisting of naked DNA remaining in the agarose. These nucleoids are then subjected to electrophoresis, whereby the negatively charged DNA migrates towards the anode depending on its degree of fragmentation, creating shapes resembling comets, which can be visualized and analysed by fluorescence microscopy. The comet assay can be adapted to assess a wide variety of genotoxins and repair kinetics, and both DNA single-strand and double-strand breaks. In this protocol, we describe in detail how to perform the neutral comet assay to assess double-strand breaks and their repair using cultured human cell lines. We describe the workflow for assessing the amount of DNA damage generated by ionizing radiation or present endogenously in the cells, and how to assess the repair kinetics after such an insult. The procedure described herein is easy to follow and cost-effective.

Stopped-flow Light Scattering Analysis of Red Blood Cell Glycerol Permeability
Stopped-Flow Light Scattering (SFLS) is a method devised to analyze the kinetics of fast chemical reactions that result in a significant change of the average molecular weight and/or in the shape of the reaction substrates. Several modifications of the original stopped-flow system have been made leading to a significant extension of its technical applications. One of these modifications allows the biophysical characterization of the water and solute permeability of biological and artificial membranes.

Here, we describe a protocol of SFLS to measure the glycerol permeability of isolated human red blood cells (RBCs) and evaluate the pharmacokinetics properties (selectivity and potency) of isoform-specific inhibitors of AQP3, AQP7 and AQP9, three mammalian aquaglyceroporins allowing transport of glycerol across membranes. Suspensions of RBCs (1% hematocrit) are exposed to an inwardly directed gradient of 100 mM glycerol in a SFLS apparatus at 20 °C and the resulting changes in scattered light intensity are recorded at a monochromatic wavelength of 530 nm for 120 s. The SFLS apparatus is set up to have a dead time of 1.6-ms and 99% mixing efficiency in less than 1 ms. Data are fitted to a single exponential function and the related time constant (, seconds) of the cell-swelling phase of light scattering corresponding to the osmotic movement of water that accompanies the entry of glycerol into erythrocytes is measured. The coefficient of glycerol permeability (Pgly, cm/s) of RBCs is calculated with the following equation:





where (s) is the fitted exponential time constant and S/V is the surface-to-volume ratio (cm-1) of the analyzed RBC specimen. Pharmacokinetics of the isoform-specific inhibitors of AQP3, AQP7 and AQP9 are assessed by evaluating the extent of RBC Pgly values resulting after the exposure to serial concentrations of the blockers.
Quantification of Fatty Acids in Mammalian Tissues by Gas Chromatography–Hydrogen Flame Ionization Detection
In mammalian organisms, fatty acids (FAs) exist mostly in esterified forms, as building blocks of phospholipids, triglycerides, and cholesteryl esters, while some exist as non-esterified free FAs. The absolute quantification of FA species in total lipids or in a specific lipid class is critical in lipid-metabolism studies. To quantify FAs in biological samples, gas chromatography–hydrogen flame ionization detection (GC-FID)-based methods have been used as highly robust and reliable techniques. Prior to GC-FID analysis, FAs need to be derivatized to volatile FA methyl esters (FAMEs). The derivatization of unsaturated FAs using classical derivatization methods that rely on high reaction temperature requires skill; consequently, the quantification results are often unreliable. The recently available FA-methylation procedure rapidly and reliably derivatizes a variety of FA species, including poly-unsaturated FAs (PUFAs). To analyze FAs in mammalian tissue samples, lipid extraction and fractionation are also critical for robust analysis. In this report, we describe a whole protocol for the GC-FID-based FA quantification of mammalian tissue samples, including lipid extraction, fractionation, derivatization, and quantification. The protocol is useful when various FAs, especially unsaturated FAs, need to be reliably quantified.
Optimized Protocol for the Incorporation of FDAA (HADA Labeling) for in situ Labeling of Peptidoglycan
Authors:  Katharina Peters, Manuel Pazos, Michael S. VanNieuwenhze and Waldemar Vollmer, date: 08/05/2019, view: 7407, Q&A: 0
The essential peptidoglycan (PG) layer surrounds the cytoplasmic membrane in nearly all bacteria. It is needed to maintain the shape of the cell and protect it from lysis due to high turgor. Growth of the PG layer is a complex process that involves the activities of PG synthases and hydrolases during elongation and cell division. PG growth sites can be labeled by the recently developed fluorescent D-amino acid (FDAA) probes in a range of different bacteria. FDAAs are incorporated into PG by DD-transpeptidases (Penicillin-binding proteins, PBPs) or, if present, LD-transpeptidase (LDTs). Long-pulse in situ labeling of E. coli cells with the FDAA 7-hydroxycoumarincarbonylamino-D-alanine (HADA) is expected to result in a uniform label at the side wall of cells and enhanced label at cell division sites due to the intense PG synthesis. However, we observed reduced label at mid-cell when labeling E. coli cells with HADA. We reasoned that probe incorporated at cell division sites may be removed by PG hydrolases and modified the labeling protocol to better preserve PG-incorporated HADA for fluorescence microscopy. Here, we report the optimized HADA-labeling protocol by which cells retain an enhanced HADA signal at the division septum.
Extraction and Analysis of Bacterial Teichoic Acids
Authors:  Kelvin Kho and Timothy C. Meredith, date: 11/05/2018, view: 9261, Q&A: 0
Teichoic acids (TA) are anionic polymers comprised of polyol phosphate repeat units that are abundant in the cell wall of Gram-positive bacteria. Both wall teichoic acid (WTA) and lipoteichoic acid (LTA) play important roles in regulating cell wall remodeling as well as conferring antibiotic resistance. To analyze TA, we describe a polyacrylamide gel electrophoresis (PAGE) method for both WTA and LTA. To extract crude WTA, the peptidoglycan sacculus is first isolated and WTA is then liberated by hydrolysis. LTA is extracted by 1-butanol and pre-treated with lipase to prevent aggregation and improve single-band resolution by PAGE. Crude extracts of both TAs are then subjected to PAGE followed by Alcian blue and silver staining. These protocols are easily adoptable by laboratories interested in rapidly analyzing TAs and can be used determine the relative abundance, relative polymer length and whether TAs are glycosylated. More detailed TA structural and compositional information can be obtained using the described purification protocols by nuclear magnetic resonance (NMR) and electrospray ionization mass spectrometry (ESI-MS) analysis.
Single and Multiplexed Gene Editing in Ustilago maydis Using CRISPR-Cas9
The smut fungus Ustilago maydis is an established model organism for elucidating how biotrophic pathogens colonize plants and how gene families contribute to virulence. Here we describe a step by step protocol for the generation of CRISPR plasmids for single and multiplexed gene editing in U. maydis. Furthermore, we describe the necessary steps required for generating edited clonal populations, losing the Cas9 containing plasmid, and for selecting the desired clones.
We use cookies on this site to enhance your user experience. By using our website, you are agreeing to allow the storage of cookies on your computer.