Improve Research Reproducibility
A Bio-protocol resource
Protocols
Biochemistry
Biophysics
Cancer Biology
Cell Biology
Developmental Biology
Immunology
Microbiology
Molecular Biology
Neuroscience
Plant Science
Stem Cell
Systems Biology
Articles and Issues
Current Issue
All Issues
Articles In Press
For Authors
Submission Procedure
Preparation Guidelines
Submit a Protocol
Editorial Process
Editorial Criteria
AI-Generated Material
Publishing Ethics
Competing Interests
Article Processing Charges
About
About Us
Aims & Scope
Advisors
Editors
Reviewers
Leadership and Management
Open Access Policy
Content Availability and Indexing
Journal Partners
Professional Memberships
Contact Us
Alerts
Advanced Search
Submit a Protocol
EN
EN - English
CN - 中文
CN
Log in / Sign up
Bio Page
Edit Profile
Home
Protocols
Biochemistry
Biophysics
Cancer Biology
Cell Biology
Developmental Biology
Immunology
Microbiology
Molecular Biology
Neuroscience
Plant Science
Stem Cell
Systems Biology
Articles and Issues
Current Issue
All Issues
Articles In Press
For Authors
Submission Procedure
Preparation Guidelines
Submit a Protocol
Editorial Process
Editorial Criteria
AI-Generated Material
Publishing Ethics
Competing Interests
Article Processing Charges
About
About Us
Aims & Scope
Advisors
Editors
Reviewers
Leadership and Management
Open Access Policy
Content Availability and Indexing
Journal Partners
Professional Memberships
Contact Us
Alerts
Submit a Protocol
Overview
Authored
(1)
IZ
Ignacio Zarra
Research fields
Plant science
Peer-reviewed
Preprint
Analysis of Xyloglucan Composition in
Arabidopsis
Leaves
Authors:
Javier Sampedro
,
Cristina Gianzo
,
Esteban Guitián
,
Gloria Revilla
and
Ignacio Zarra
,
date:
10/05/2017,
view:
5581,
Q&A:
0
Xyloglucan is one of the main components of the primary cell wall in most species of plants. This protocol describes a method to analyze the composition of the enzyme-accessible and enzyme-inaccessible fractions of xyloglucan in the model species
Arabidopsis thaliana
. It is based on digestion with an endoglucanase that attacks unsubstituted glucose residues in the backbone. The identities and relative amounts of released xyloglucan fragments are then determined using MALDI-TOF mass spectrometry.
More >
Find out more
We use cookies on this site to enhance your user experience. By using our website, you are agreeing to allow the storage of cookies on your computer.