Ivan Zanoni
  • Assistant Professor, Harvard Medical School
Research fields
  • Immunology
Cytokine-stimulated Phosphoflow of PBMC Using CyTOF Mass Cytometry
Authors:  Rosemary Fernandez and Holden Maecker, date: 06/05/2015, view: 17931, Q&A: 1
Phosphorylation of tyrosine, serine, and threonine residues is critical for the control of protein activity involved in various cellular events. An assortment of kinases and phosphatases regulate intracellular protein phosphorylation in many different cell signaling pathways. These pathways include T and B cell signaling, regulating growth and cell cycle control, plus cytokine, chemokine, and stress responses. Phosphoflow assays combine phosphoprotein-specific antibodies with the power of flow cytometry to enhance phosphoprotein study. In our assay, peripheral blood mononuclear cells are stimulated by cytokines, fixed, surface-stained with a cocktail of antibodies labeled with MAXPAR (brand name) metal-chelating polymers and permeabilized with methanol. They are then stained with intracellular phospho-specific antibodies.

We use a CyTOFTM mass cytometer to acquire the ICP-MS (inductively coupled plasma mass spectrometry) data. The current mass window selected is approximately AW 103-203, which includes the lanthanides used for most antibody labeling, as well as iridium and rhodium for DNA intercalators. Subsequent analysis of the dual count signal data using FlowJo software allows for cell types to be analyzed based on the dual count signal in each mass channel. The percentage of each cell type is determined and reported as a percent of the parent cell type. Median values are reported to quantitate the level of phosphorylation of each protein in response to stimulation. Comparing the level of phosphorylation between samples can offer insight to the status of the immune system.
Generation and Maturation of Human Monocyte-derived DCs
Authors:  Michela Spadaro, Monica Montone and Federica Cavallo, date: 08/05/2014, view: 23460, Q&A: 0
Dendritic cells (DC) are antigen-presenting cells, which play a critical role in the regulation of the adaptive immune response. They act as a bridge between the innate and the adaptive immune systems. An approach to study their function and potentiality is to generate DC-like cells by culturing CD14+ monocyte-enriched peripheral blood mononuclear cells (PBMC). In the presence of GM-CSF and IL-4, these cultures give rise to large numbers of DC-like cells. Generating human-DC from PBMC is a useful tool to study biological functions of human DC.
Isolation of Cells from Human Intestinal Tissue
Authors:  Heli Uronen-Hansson, Emma Persson, Petra Nilsson and William Agace, date: 04/05/2014, view: 16952, Q&A: 0
The intestinal lamina propria contains a dense network of T cells, dendritic cells (DCs) and macrophages, which play an important role in local innate and adaptive immune responses. We have recently identified distinct subsets of DCs (Persson et al., 2013) and macrophages (Bain et al., 2013) in the human intestine. In addition, we have studied T cells in healthy and diseased intestine. Here, we describe two methods for isolating these cell populations: 1) enzymatic treatment and 2) migration based isolation. The enzymatic method can be used to isolate T cells, DC and macrophages, whereas the migration based ‘walk-out’ protocol is suitable for DC isolation, as these cells migrate out from the tissues.
We use cookies on this site to enhance your user experience. By using our website, you are agreeing to allow the storage of cookies on your computer.