Improve Research Reproducibility A Bio-protocol resource

Plant Science


Categories

Protocols in Current Issue
Protocols in Past Issues
0 Q&A 1357 Views Oct 20, 2025

Banana (Musa spp.) is a globally important horticultural crop that faces significant challenges from pests and diseases, which threaten yield and long-term sustainability. The efficient production of clean, disease-free planting material is essential for both commercial plantations and small-holder systems. This paper presents a rapid and reproducible protocol for direct plant regeneration from immature male inflorescences of banana. The method involves surface sterilization of immature male flowers, longitudinal dissection, and culture on Murashige and Skoog (MS) medium supplemented with 6-benzylaminopurine (BAP), enabling direct shoot regeneration from floral meristems without an intermediate regenerable callus phase. This approach offers several advantages over traditional embryogenic cell suspension (ECS) methods, including simplified sterilization, high regeneration efficiency, and scalability. The protocol was successfully applied to multiple banana cultivars, including Cavendish (AAA) and Lady Finger (AAB), achieving 100% shoot regeneration efficiency with plantlet production within 6–8 months. This protocol provides a reliable and efficient alternative for rapid mass propagation of banana plants, supporting sustainable production and research applications.

0 Q&A 1157 Views Sep 20, 2025

This protocol outlines a reliable method for the micropropagation of Nicotiana benthamiana using axillary shoot branching. Axillary shoot induction involves stimulating the outgrowth of dormant buds located at the leaf axils, allowing for the development of genetically stable shoots without callus formation or the use of exogenous plant growth regulators. Nodal explants are cultured on MS medium supplemented with kinetin and indole-3-butyric acid (IBA) to induce shoot formation. Isolated shoots are then transferred to hormone-free MS medium for rooting. This method is simple, reproducible, and supports rapid plant multiplication for downstream applications such as agroinfiltration or transient protein expression.

0 Q&A 1431 Views Feb 20, 2025

To prepare Hevea brasiliensis plantations, selected planting material is propagated by grafting using illegitimate seedlings as rootstocks, whose paternal genotype is unknown. Recent advances in rubber tree in vitro cloning propagation open the possibility of using these techniques to supply new planting material. Micrografting is a promising technique to speed up the preparation of plant material for rootstock–scion interaction studies. This article describes the implementation of an efficient micrografting technique from Hevea in vitro plants from clone PB 260. The procedure combines several conditions to preserve the root system and the grafted scion and to prevent any breakage of rootstock buds. This technique paves the way for clonal propagation and holds potential for further development on other rubber clones for further studies on the interaction between rootstock and scion.




We use cookies to improve your user experience on this site. By using our website, you agree to the storage of cookies on your computer.