Transforming growth factor beta (TGF-β) is a multi-functional cytokine that plays a significant role in multiple diseases, including fibrosis and tumor progression. Whilst the biologic effects of TGF-β are well characterized, it is unclear how TGF-β signaling is regulated to impart specific responses within certain cell types. One mechanism of regulation may be through TGF-β activation, since TGF-β is always expressed in a latent form (L-TGF-β). Campbell et al. recently presented a new structural model to demonstrate how the integrin αvβ8 might specifically control TGF-β activation and signaling. In this model, αvβ8 binds to cell surface L-TGF-β1 to induce a conformational change, which exposes mature TGF-β peptide to TGF-β receptors (TGF-βRs), allowing initiation of TGF-β signaling from within the latent complex. This model also predicts that TGF-β signaling would be directed specifically towards the TGF-β expressing cell surface. We sought to test the validity of the new structural model by creating a cell-based assay which utilizes luciferase TGF-β reporter cells (TMLC). TMLC cells express high levels of TGF-βRs, but do not express cell surface L-TGF-β. We modified TMLC reporter cells to express cell surface L-TGF-β1 in a mutant form, which prevents the release of mature TGF-β from the latent complex. The newly generated cell lines were then used in a novel functional assay to investigate whether integrin αvβ8 could potentiate cell intrinsic TGF-β signaling from within the latent complex in vitro.