Root is a perfect model for studying the mechanisms of plant cell growth. Along the root length, several zones where cells are at different stages of development can be visualized (Figure 1). The dissection of the root on these zones allows the investigation of biochemical and genetic aspects of different growth steps. Maize primary root is much more massive than the root of other Monocots and thus more convenient for such type of research. Plant cell wall, mainly consisting of polysaccharides, plays an important role in plant life. Therefore, measurement of plant carbohydrate content and glycoside-modifying enzyme activity in plant cells has become an important aspect in plant physiology. One of the well-documented changes of hemicelluloses molecules during elongation growth of monocots cells is the decrease of arabinose substitution of glucuronoarabinoxylans. This might be caused by changes in synthesis of this polysaccharide or by the action of arabinofuranosidases. Here, we describe the protocol of spectrophotometric measuring of arabinofuranosidase activity in maize root by the rate of hydrolysis of chromogenic substrate (4-nitrophenyl α-L-arabinofuranoside).
Figure 1. Scheme of plant material collection for further arabinofuranosidase assay. Four-day-old dark-grown maize seedling (left panel). Different zones of primary maize root and corresponding stages of cell development, according to Kozlova
et al. (2012) (right panel).