Nuclear Transformation of Chlamydomonas reinhardtii by Electroporation Author: Tyler M Wittkopp,
date: 05/05/2018,
view: 9657,
Q&A: 1 The unicellular green alga Chlamydomonas reinhardtii is an important model organism for studying photosynthesis, acclimation to abiotic stress, cilia biology, and many other biological processes. Many molecular biology tools exist for interrogating gene function including the ability to easily transform the nuclear genome of Chlamydomonas. While technical advances such as TALENs, ZFNs and CRISPR are making it easier to precisely edit the nuclear genome, the efficiency of such methods in Chlamydomonas is at present very low. In contrast, random insertion by nuclear transformation tends to be a much more efficient process. This protocol describes a method for transformation of the Chlamydomonas nuclear genome by electroporation. The protocol requires at least 3 days of work and generally results in the appearance of small colonies within 1-2 weeks.