PM
Polina V. Mikshina
  • Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Center, Russian Academy of Science, Russian
Research fields
  • Plant science
Detection of the Secreted and Cytoplasmic Fractions of IpaB, IpaC and IpaD by Lysozyme Permeabilization
Authors:  François Xavier Campbell-Valois, Pamela Schnupf and Philippe J. Sansonetti, date: 10/20/2014, view: 9147, Q&A: 0
Gram negative bacterial pathogens, such as Shigella flexneri, which possess a Type Three Secretion System (T3SS), are able to transfer bacterial proteins, dubbed translocators and effectors, from their cytoplasm into the cytoplasm of their host cells using a syringe like needle complex. For Shigella, it has been shown that during cellular invasion, the intrabacterial pool of translocators and effectors is completely depleted upon activation of the TTS Apparatus and is then progressively replenished while bacteria remain inside host cells. Replenishment of effectors allows for cell-to-cell spreading events, which also necessitate reactivation of the T3SA, and lead to another round of depletion of intrabacterial effector stores. To understand the state of individual intracellular bacteria during infection, it is therefore of interest to be able to locate and evaluate the relative quantity of the intrabacterial and secreted pool of translocators and effectors. We recently adapted a method based on EDTA and lysozyme to permeabilize the cell wall of bacteria present within host cells in order to label the intrabacterial pool of the tip protein IpaD and the translocators IpaB and IpaC. Herein, we describe in detail the protocol to perform the successive labeling of the intrabacterial and secreted pools. This method is theoretically extendable to virulence factors secreted by other secretion systems and other bacterial pathogens.
Design of a Transcription-based Secretion Activity Reporter (TSAR) for the Type III Secretion Apparatus of Shigella flexneri and Uses Thereof
Authors:  François Xavier Campbell-Valois, Pamela Schnupf and Philippe J. Sansonetti, date: 10/20/2014, view: 10664, Q&A: 1
Many gram-negative bacterial pathogens, including Shigella flexneri, are able to translocate bacterial proteins, dubbed effectors, across the host cell plasma membrane into the host cell cytosol using a syringe-like structure, the type three secretion apparatus (T3SA). While some bacteria use their T3SA to modulate their phagosomal environment (Salmonella spp.), establish pedestal structure to form microcolonies on the plasma membrane (Enteropathogenic Escherichi coli) or lyse their entry vacuole (Shigella spp.), they all have in common a tightly regulated activity of their T3SA. However, the tracking of the activity of the T3SA in infected cells and tissue has been difficult to perform. Using the property of MxiE-dependent promoters that are upregulated when the T3SA is active, we have recently designed a transcription-based secretion activity reporter (TSAR) that allows the following of the activity of the S. flexneri T3SA in real-time in tissue culture cells and in vivo using fast maturing GFP intrinsic fluorescence. Herein we describe the design of the TSAR and its application to fixed and live samples for microscopy and flow cytometry in a colonic epithelial cell model using TC7 tissue culture cells.
Dye-uptake Experiment through Connexin Hemichannels
Authors:  Andrea Puhar and Philippe J. Sansonetti, date: 09/05/2014, view: 11247, Q&A: 0
Connexins (Cxs) are integral membrane proteins of vertebrates that associate to form hexameric transmembrane channels, named hemichannels. Twenty-one Cx types have been described, which are named according to their molecular weight. Cxs are expressed in many cell types, e.g. epithelial cells, astrocytes and immune cells. Hemichannels allow the passage of molecules of up to 1-2 kDa along the concentration gradient. When surface-exposed, hemichannels mediate the exchange of molecules between the cytosol and the extracellular space. Hemichannels are closed by default, but several cues inducing their opening have been described, e.g. a drop in the extracellular Ca2+ concentration (Evans et al., 2006) or infection with enteric pathogens (Puhar et al., 2013; Tran Van Nhieu et al., 2003). Hemichannel opening can be measured by electrophysiology, by quantifying the release of a hemichannel-permeable molecule into the extracellular medium or by quantifying the uptake of a hemichannel-permeable, plasma membrane-impermeant molecule. As the extent of uptake of a molecule is proportional to its concentration, exposure time, temperature (these parameters are controlled) and, importantly, to the number of active hemichannels on the cell surface, uptake assays are routinely used to assess hemichannel opening. This protocol for the uptake of the fluorescent dye ethidium bromide was used with Hela cells that were stably transfected with Cx26 or Cx43 (Paemeleire et al., 2000). Nevertheless, it could likely be used with other Cx-expressing cell types.
Induction of Connexin-hemichannel Opening
Authors:  Andrea Puhar and Philippe J. Sansonetti, date: 09/05/2014, view: 8314, Q&A: 0
Connexins (Cxs) are integral membrane proteins of vertebrates that associate to form hexameric transmembrane channels, named hemichannels. Twenty-one Cx types have been described, which are named according to their molecular weight. Cxs are expressed in many cell types, e.g. epithelial cells, astrocytes and immune cells. Hemichannels allow the passage of molecules of up to 1-2 kDa along the concentration gradient. When surface-exposed, hemichannels mediate the exchange of molecules between the cytosol and the extracellular space. Hemichannels are closed by default, but several cues inducing their opening have been described, e.g. a drop in the extracellular Ca2+ concentration (Evans et al., 2006) or infection with enteric pathogens (Puhar et al., 2013; Tran Van Nhieu et al., 2003). This protocol was used with epithelial cells, in particular with polarized and non-polarized intestinal epithelial TC7 cells and with Hela cells that were stably transfected with Cx26 or Cx43 (Paemeleire et al., 2000). Nevertheless, it could likely be used with other Cx-expressing cell types. Whether hemichannels are open can be determined by electrophysiology or by measuring the release into the extracellular medium of a hemichannel permeable molecule (for example, ATP) or the uptake of a hemichannel-permeable, plasma membrane-impermeant molecule [for example, the fluorescent dye ethidium bromide-see associated protocol “Dye-uptake Experiment through Connexin Hemichannels” (Puhar and Sansonetti, 2014)].
We use cookies on this site to enhance your user experience. By using our website, you are agreeing to allow the storage of cookies on your computer.