Reviewer
Fan-Yan Wei
  • Faculty, Tohoku University
Research fields
  • Cell biology
Nematode Epicuticle Visualisation by PeakForce Tapping Atomic Force Microscopy
Authors:  Farida Akhatova, Gölnur Fakhrullina, Elvira Gayazova and Rawil Fakhrullin, date: 11/05/2017, view: 7579, Q&A: 0
The free-living soil nematode Caenorhabditis elegans has become an iconic experimental model animal in biology. This transparent animal can be easily imaged using optical microscopy to visualise its organs, tissues, single cells and subcellular events. The epicuticle of C. elegans nematodes has been studied at nanoscale using transmission and scanning (SEM) electron microscopies. As a result, imaging artefacts can appear due to embedding the worms into resins or coating the worms with a conductive gold layer. In addition, fixation and contrasting may also damage the cuticle. Conventional tapping mode atomic force microscopy (AFM) can be applied to image the cuticle of the dried nematodes in air, however this approach also suffers from imaging defects. Ideally, the nematodes should be imaged under conditions resembling their natural environment. Recently, we reported the use of PeakForce Tapping AFM mode for the successful visualisation and numerical characterisation of C. elegans nematode cuticle both in air and in liquid (Fakhrullina et al., 2017). We imaged the principal nematode surface structures and characterised mechanical properties of the cuticle. This protocol provides the detailed description of AFM imaging of liquid-immersed C. elegans nematodes using PeakForce Tapping atomic force microscopy.
We use cookies on this site to enhance your user experience. By using our website, you are agreeing to allow the storage of cookies on your computer.