GC
Giulia Casorati
  • Post-Doc, San Raffaele Scientific Institute Milan
Research fields
  • Immunology
Primary Mouse Invariant Natural Killer T (iNKT) Cell Purification and Transduction
Authors:  Gloria Delfanti, Paolo Dellabona and Giulia Casorati, date: 07/05/2023, view: 639, Q&A: 0

Invariant natural killer T (iNKT) cells are a non-conventional T-cell population expressing a conserved semi-invariant T-cell receptor (TCR) that reacts to lipid antigens, such as α-galactosyl ceramide (α-GalCer), presented by the monomorphic molecule CD1d. iNKT cells play a central role in tumor immunosurveillance and represent a powerful tool for anti-cancer treatment, notably because they can be efficiently redirected against hematological or solid malignancies by engineering with tumor-specific chimeric antigen receptors (CARs) or TCRs. However, iNKT cells are rare and require specific ex vivo pre-selection and substantial in vitro expansion to be exploited for adoptive cell therapy (ACT). This protocol describes a robust method to obtain a large number of mouse iNKT cells that can be effectually engineered by retroviral (RV) transduction. A major advantage of this protocol is that it requires neither particular instrumentation nor a high number of mice. iNKT cells are enriched from the spleens of iVα14-Jα18 transgenic mice; the rapid purification protocol yields a highly enriched iNKT cell population that is activated by anti-CD3/CD28 beads, which is more reproducible and less time consuming than using bone marrow–derived dendritic cells loaded with α-GalCer, without risks of expanding contaminant T cells. Forty-eight hours after activation, iNKT cells are transduced with the selected RV by spin inoculation. This protocol allows to obtain, in 15 days, millions of ready-to-use, highly pure, and stably transduced iNKT cells that might be exploited for in vitro assays and ACT experiments in preclinical studies.

Extraction and Identification of T Cell Stimulatory Self-lipid Antigens
Autoreactive T cells restricted to CD1 molecules and specific for endogenous lipids are abundant in human blood (de Jong et al., 2010; de Lalla et al., 2011). A few self-lipid molecules recognized by diverse individual T cell clones and accumulated within APCs following stress signals or cell transformation have been identified so far (de Jong et al., 2010; Chang et al., 2008; Lepore et al., 2014). These findings suggested that auto-reactive CD1-restricted T cells display broad lipid specificities and may play critical roles in different types of immune responses including cancer immune surveillance, autoimmunity and antimicrobial immunity. Therefore, the identification of the repertoire of self-lipid molecules recognized by T cells is important to study the physiologic functions of this T cell population and to assess their therapeutic potential (Lepore et al., 2014). Here we describe the protocol we established to isolate and identify endogenous lipids derived from leukemia cells, which stimulate specific autoreactive CD1c-restricted T lymphocytes (Lepore et al., 2014). This protocol can be applied to isolate lipid antigens from any type of target cells and to investigate the self-lipid antigen specificity of autoreactive T cells restricted to all CD1 isoforms (Facciotti et al., 2012).
We use cookies on this site to enhance your user experience. By using our website, you are agreeing to allow the storage of cookies on your computer.