Improve Research Reproducibility
A Bio-protocol resource
Protocols
Biochemistry
Biophysics
Cancer Biology
Cell Biology
Developmental Biology
Immunology
Microbiology
Molecular Biology
Neuroscience
Plant Science
Stem Cell
Systems Biology
Articles and Issues
Current Issue
All Issues
Articles In Press
For Authors
Submission Procedure
Preparation Guidelines
Submit a Protocol
Editorial Process
Editorial Criteria
AI-Generated Material
Publishing Ethics
Competing Interests
Article Processing Charges
About
About Us
Aims & Scope
Advisors
Editors
Reviewers
Leadership and Management
Open Access Policy
Content Availability and Indexing
Journal Partners
Professional Memberships
Contact Us
Alerts
Advanced Search
Submit a Protocol
EN
EN - English
CN - 中文
CN
Log in / Sign up
Bio Page
Edit Profile
Home
Protocols
Biochemistry
Biophysics
Cancer Biology
Cell Biology
Developmental Biology
Immunology
Microbiology
Molecular Biology
Neuroscience
Plant Science
Stem Cell
Systems Biology
Articles and Issues
Current Issue
All Issues
Articles In Press
For Authors
Submission Procedure
Preparation Guidelines
Submit a Protocol
Editorial Process
Editorial Criteria
AI-Generated Material
Publishing Ethics
Competing Interests
Article Processing Charges
About
About Us
Aims & Scope
Advisors
Editors
Reviewers
Leadership and Management
Open Access Policy
Content Availability and Indexing
Journal Partners
Professional Memberships
Contact Us
Alerts
Submit a Protocol
Overview
Authored
(1)
MS
Marek Szecowka
Central Metabolism Research Group, Max-Planck-Institut für Molekulare Planzenphysiologie, Germany
Research fields
Plant science
Peer-reviewed
Preprint
Extraction and Measurement the Activities of Cytosolic Phosphoenolpyruvate Carboxykinase (PEPCK) and Plastidic NADP-dependent Malic Enzyme (ME) on Tomato (
Solanum lycopersicum
)
Authors:
Sonia Osorio
,
José G. Vallarino
,
Marek Szecowka
,
Shai Ufaz
,
Vered Tzin
,
Ruthie Angelovici
,
Gad Galili
and
Alisdair R. Fernie
,
date:
05/05/2014,
view:
10364,
Q&A:
0
A recent study demonstrated that cytosolic phosphoenolpyruvate carboxykinase (PEPCK) and NADP-malic enzyme (NADP-ME) have an important role in malate metabolism during fruit ripening (Osorio
et al.
, 2013). PEPCK catalyze the ATP-dependent decarboxylation of oxaloacetate (OAA) to phosphoenolpyruvate (PEP) and NADP-ME, the reversible conversion of malate and pyruvate. Here, we present the detailed protocols to measure PEPCK activity in carboxylation direction by following oxidation of NADH and to measure NADP-ME activity based upon the reduction of NADP
+
.
More >
Find out more
We use cookies on this site to enhance your user experience. By using our website, you are agreeing to allow the storage of cookies on your computer.