

Heterologous Production and Anaerobic Purification of His- and Strepll-tagged Recombinant Proteins

Jens Noth*

Fakultät für Biologie und Biotechnologie, AG Photobiotechnologie, Ruhr Universität Bochum, Bochum, Germany

*For correspondence: Jens.noth@rub.de

[Abstract] This protocol describes the heterologous expression and purification of proteins related to anoxic hydrogen production of *Chlamydomonas reinhardtii* (Noth *et al.*, 2013). For this, the bacterial expression hosts *Escherichia coli* BL21 (DE3) Δ*iscR* (Akhtar MK *et al.*, 2008) and *Clostridium acetobutylicum* ATCC 824 are used, which are grown either aerobic or anaerobic with glucose. Two standard chromatographic methods for purification were applied using His- and StrepII-tagged proteins (Figure 1). All procedures have been performed in an anaerobic tent to avoid the access of oxygen.

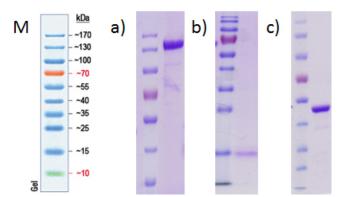


Figure 1. Coomassie stained SDS-PAGE of purified, heterologously expressed proteins from *C. reinhardtii*. M: MW marker PageRuler Prestained Protein Ladder 10-170 kDa; a) purified PFR1 loaded onto a 10% SDS-polyacrylamidgel; b) purified [2Fe2S] ferredoxin (PetF) loaded onto a 15% SDS-polyacrylamidgel; c) purifiedhydrogenase (HydA1) loaded onto a 10% SDS-polyacrylamidgel. Different amounts of protein are loaded onto each gel.

Materials and Reagents

- 1. Expression vector (pASK-IBA)
- 2. LB medium (Lennox) (Carl Roth, Germany)
- 3. Vogel Bonner minimal medium (homemade) (Vogel HJ et al., 1956)
- 4. Thiamin hydrochlorid (Carl Roth, Germany)

- 5. Resazurin (Riedel-de Haën, Germany)
- 6. Immidazole (Alfa Aesar, USA)
- 7. Escherichia coli BL21 (DE3) ΔiscR
- 8. Clostridium acetobutylicum ATCC 824
- 9. Ni Sepharose 6 Fast Flow (GE Healthcare)
- 10. Strep-Tactin Superflow (IBA GmbH, Germany)
- 11. Ampicillin
- 12. Anhydrotetracycline
- 13. Glucose
- 14. Sodium dithionite (laboratory reagent grade > 85%)
- 15. Avidin (Affiland)
- 16. Strep tactin
- 17. Glycerol
- 18. d-desthiobiotin (≥ 98%, TLC)
- 19. Thiamine pyrophosphate
- 20. PageRuler Prestained Protein Ladder 10-170 kDa (Thermo Fisher Scientific, catalog number: 26616)
- 21. 0.1 M Tris buffer (pH 8) (see Recipes)
- 22. Pre-equilibrated gravity flow Ni-NTA (see Recipes)

Equipment

- 1. Airtight vial
- 2. Sonicator: Branson Sonifier 250 (Branson, USA)
- 3. Ultracentrifuge
- 4. Anaerobic tent (1% H₂, 99% N₂) (Toepffer Lab Systems, Germany)
- 5. 0.2 µm pore size sterile filter (Sarstedt AG & Co.)
- 6. NanoDrop (Paqlab, Germany)
- 7. Batch fermenter (Infors HT, CH)

<u>Procedure</u>

- A. Anaerobic expression of pyruvate: ferredoxin oxidoreductase (Noth et al., 2013)
 - Electroporation (Sambrook et al., 2006) of 100 μl E. coli BL21 (DE3) ΔiscR (Akhtar et al., 2008) with ~100 ng expression vector (pASK-IBA).
 - 2. Inoculation of 200 ml LB and aerobic growth of a preculture over night at 37 °C (180 rpm).

- 3. Inoculation of 4 L Vogel Bonner medium (8 x 500 ml; 2,000 ml Erlenmeyer flasks) supplemented with 100 μ g/ml ampicillin, 50 μ M thiamin hydrochlorid and 0.2 μ M resazurin using 15 ml preculture each.
- 4. Aerobic growth at 37 °C and 180 rpm until the culture reaches the anaerobic phase at A_{600} of 0.6. At that point, the redox indicator resazurin within the medium turns from blue to pink.
- 5. Each 2 L of culture are induced by adding 0.2 μg/ml anhydrotetracycline and transferred into sterile 2 L Schott flasks containing 50 ml 20% glucose (5 g/L).
- 6. Protein expression is carried out over night at 8 °C without stirring.
- 7. Cells are anaerobically harvested by centrifugation for 20 min at 7,500 *x g*, resuspended in Tris-HCl (pH 8.0), 10% glycerol and stored at -20 °C until purification.
- B. Anaerobic purification of pyruvate:ferredoxin oxidoreductase (His-tag)
 - 1. For purification the pellet (2 L of culture) is thawed at room temperature and lysed by sonication while keeping the cells cooled on ice.
 - Note: Five times for 30 sec; output, 25; Branson Sonifier 250.
 - 2. Sedimentation of cell debris at 200,000 x g for 60 min and 4 °C in an ultracentrifuge.
 - 3. The soluble fraction is filtered using a pore size of 0.2 µm to get rid of unwanted material which clogs the column.
 - 4. Then, the sample is loaded on a pre-equilibrated (100 mM Tris-HCl, pH 8.0, 10 mM imidazole, 0.5 mM thiamine pyrophosphate) gravity flow Ni-NTA fast-flow column with a bed volume of 4 ml.
 - 5. Protein purification is achieved via increasing the imidazole concentration from 10 to 20 mM during washing each with 40 ml buffer.
 - The His-tagged PFR1 protein is eluted from the column with 10 ml buffer containing 100 mM imidazole. Nine elution fractions each 1.1 ml are collected.
 - 7. The protein concentration of the brownish main elution fractions 3 and 4 are immediately determined using A₂₈₀.
- C. Aerobic expression of [2Fe2S] ferredoxins (Jacobs *et al.*, 2009; Winkler *et al.*, 2009) with minor changes
 - 1. *E. coli* BL21 (DE3) $\Delta iscR$ containing the expression plasmid pASK-IBA7-FDX is grown in Vogel Bonner minimal medium for 4 h after induction at A₆₀₀ of 0.6.
 - 2. Cells are harvested, washed in Tris-HCl (pH 8.0), sedimented again and stored at -20 °C until purification.
- D. Anaerobic expression of HydA1 (Girbal et al., 2005; von Abendroth et al., 2008)

- Expression plasmid containing C. acetobutylicum ATCC 824 strain is grown in CGMmedium and a glucose concentration of 60 g/L anaerobically in a batch fermenter over night at 35-37 °C and 100 rpm.
- 2. Cells are harvested in an anaerobic tent analog to *E. coli*, resuspended in Tris-HCl (pH 8.0), 10% glycerol containing 10 mM sodium dithionite and stored at -20 °C until purification.
- E. Anaerobic expression of bacterial 2[4Fe4S] ferredoxin analog to HydA1 (Girbal *et al.*, 2005; von Abendroth *et al.*, 2008, Noth *et al.*, 2013)
 - 1. Expression plasmid containing *C. acetobutylicum* ATCC 824 strain is grown in CGM-medium and a glucose concentration of 60 g/L anaerobically in a batch fermenter over night at 35-37 °C and 100 rpm.
 - Cells are harvested in an anaerobic tent analog to E. coli, resuspended in Tris-HCl (pH 8.0), 10% glycerol containing 10 mM sodium dithionite and stored at -20 °C until purification.
- F. Anaerobic purification of StrepII-tagged proteins (C-E)
 - 1. All buffers used contain 2 mM sodium dithionite.
 - 2. For purification the cell pellet is thawed at room temperature and lysed by sonication while keeping the cells cooled on ice.
 - Note: Five times for 30 sec; output, 25; Branson Sonifier 250
 - 3. Sedimentation of cell debris at 200,000 x g for 60 min and 4 °C in an ultracentrifuge.
 - 4. Supernatant (40 ml) is incubated for 1 h with 3.5 mg Avidin (Stock 50 mg/ml) at 4 °C.
 - 5. The soluble fraction is filtered using a pore size of 0.2 µm to get rid of biotinylated, complexed proteins and unwanted material which clogs the column.
 - 6. Then, the filtered solution is loaded on a Tris-HCl (pH 8.0) equilibrated 2 ml strep tactin gravity flow column.
 - 7. The unbound proteins are washed from the column using 80 ml Tris-HCl (pH 8.0).
 - 8. Elution is performed with 10 ml Tris-HCl (pH 8.0), d-desthiobiotin (0.8 mg/ml) in fractions of 1 ml.

Recipes

0.1 M Tris buffer (pH 8) (1,000 ml)
 Mix 12.114 g of Tris base with 800 ml dH₂O
 Add 100 ml Glycerol
 pH to 8 with HCl

Add ddH₂O to 1,000 ml Autoclave for 20 minutes at 121 °C Store at 4 °C

2. Pre-equilibrated gravity flow Ni-NTA0.1 mM Tris-HCl (pH 8)10 mM imidazole0.5 mM thiamine pyrophosphate

Acknowledgments

Aerobic expression of [2Fe2S] ferredoxins was adapted from Jacobs *et al.* (2009). Anaerobic expression and purification of the 2[4Fe4S] bacterial type ferredoxin was done according to the previously published isolation of [FeFe]-Hydrogenase HydA1 from *Chlamydomonas reinhardtii* by Girbal *et al.* (2005) and von Abendroth *et al.* (2008), which is also presented here. Research on the pyruvate: ferredoxin oxidoreductase from *C. reinhardtii* was scientifically supported by Anja Hemschemeier and Thomas Happe.

References

- Akhtar, M. K. and Jones, P. R. (2008). <u>Deletion of iscR stimulates recombinant clostridial</u> <u>Fe-Fe hydrogenase activity and H2-accumulation in Escherichia coli BL21(DE3)</u>. Appl Microbiol Biotechnol 78(5): 853-862.
- Girbal, L., von Abendroth, G., Winkler, M., Benton, P. M., Meynial-Salles, I., Croux, C., Peters, J. W., Happe, T. and Soucaille, P. (2005). <u>Homologous and heterologous overexpression in Clostridium acetobutylicum</u> and characterization of purified clostridial and algal Fe-only hydrogenases with high specific activities. *Appl Environ Microbiol* 71(5): 2777-2781.
- 3. Jacobs, J., Pudollek, S., Hemschemeier, A. and Happe, T. (2009). <u>A novel, anaerobically induced ferredoxin in *Chlamydomonas reinhardtii*. *FEBS Lett* 583(2): 325-329.</u>
- 4. Noth, J., Krawietz, D., Hemschemeier, A. and Happe, T. (2013). <u>Pyruvate:ferredoxin oxidoreductase is coupled to light-independent hydrogen production in *Chlamydomonas reinhardtii*. *J Biol Chem* 288(6): 4368-4377.</u>
- Sambrook, J. and Russell, D. W. (2006). <u>Transformation of E. coli by Electroporation</u>. CSH Protoc 2006(1).
- 6. Vogel, H. J. and Bonner, D. M. (1956). <u>Acetylornithinase of *Escherichia coli*: partial purification and some properties. *J Biol Chem* 218(1): 97-106.</u>

- 7. von Abendroth, G., Stripp, S., Silakov, A., Croux, C., Soucaille, P., Girbal, L. and Happe, T. (2008). Optimized over-expression of [FeFe] hydrogenases with high specific activity in Clostridium acetobutylicum. International Journal of Hydrogen Energy 33(21): 6076-6081.
- 8. Winkler, M., Kuhlgert, S., Hippler, M. and Happe, T. (2009). <u>Characterization of the key step for light-driven hydrogen evolution in green algae.</u> *J Biol Chem* 284(52): 36620-36627.