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Abstract

Pinpointing causal genes for complex traits from genome-wide association studies (GWAS) remains a central challenge in
crop genetics, particularly in species with extensive linkage disequilibrium (LD) such as rice. Here, we present CisTrans-
ECAS, a computational protocol that overcomes this limitation by integrating population genomics and transcriptomics. The
method’s core principle is the decomposition of gene expression into two distinct components: a cis-expression component
(cis-EC), regulated by local genetic variants, and a trans-expression component (trans-EC), influenced by distal genetic
factors. By testing the association of both components with a phenotype, CisTrans-ECAS establishes a dual-evidence
framework that substantially improves the reliability of causal inference. This protocol details the complete workflow,
demonstrating its power not only to identify causal genes at loci with weak GWAS signals but also to systematically
reconstruct gene regulatory networks. It provides a robust and powerful tool for advancing crop functional genomics and
molecular breeding.

Key features
® Pinpointing causal genes with high precision: Integrates cis- and trans-expression components to distinguish true causal
genes from LD artifacts, even for small-effect loci.

e Reconstructing gene regulatory networks: Uses gene expression as molecular traits to identify upstream regulators,
revealing complex molecular regulatory pathways.

e  Versatile and reproducible workflow: An R-based pipeline using PLINK and GCTA, applicable to rice and other species
with population genomics and transcriptomics data.

e  Experimentally validated reliability: The method successfully identified key genes OsMADSI7 and SDT that regulate
rice spikelet number, with their regulatory relationship confirmed by molecular experiments.

Keywords: Causal gene identification, Gene regulatory network, Transcriptome-wide association study (TWAS), Cis- and
trans-expression components, Rice, Crop genetics
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Flowchart of the CisTrans-ECAS method. The workflow is divided into three main stages: preparation before running
scripts, the process of obtaining cis-EC and trans-EC, and the selection of analytical methods for downstream analysis. The
flowchart details the key scripts (gcta_cis.R, merge cis_res.R, cistrans_etwas.R, cistrans_twas.R) and their respective inputs
and outputs.

Background

Important agronomic traits in crops, such as yield, quality, and stress resistance, are typically complex traits controlled by
multiple genes. Genome-wide association studies (GWAS) are a primary tool for dissecting the genetic basis of these traits.
However, in many crops like rice, extensive linkage disequilibrium (LD) and the polygenic nature of traits mean that a single
GWAS locus can harbor dozens of genes, making the identification of the true causal gene a formidable challenge. This
significantly limits the practical application of GWAS findings.

The advent of transcriptomics has opened new avenues to tackle this issue. Gene expression, as an intermediate layer
between genotype and phenotype, is itself under genetic control. Methods like expression quantitative trait loci (eQTL)
analysis and TWAS link genetic variants to gene expression levels, providing functional evidence to prioritize candidate
genes. Recent TWAS frameworks (e.g., PrediXcan- and FUSION-based approaches) and eQTL-guided colocalization
analyses provide functional evidence to link genes with complex traits and have been applied in both human and plant
genetics [1-3]. These models predict gene expression from the genotype and test its association with phenotypes, offering a
mechanistic layer beyond SNP-trait correlations. Colocalization-based methods further evaluate whether GWAS and eQTL
signals share a common causal variant, helping prioritize functional loci. While these approaches have proven valuable, their
performance in crops is often hindered by extensive LD, complex population structure, and the difficulty of distinguishing
traits driven by local regulation from those influenced by distal regulatory networks.

To address this challenge, we developed the CisTrans-ECAS (cis- and trans-expression component-based association study)
method. Its core concept is that the expression variation of a gene can be partitioned into two components: 1) the cis-
expression component (cis-EC), in which expression variation is explained by local genetic variants (e.g., within 100 kb
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upstream and downstream); and 2) the frans-expression component (trans-EC), in which expression variation is driven by
distal regulatory factors or other genetic influences not captured by the cis-EC.

Unlike traditional TWAS methods that rely on total gene expression or predicted expression levels, CisTrans-ECAS
explicitly decomposes expression into cis- and trans-regulated components. This separation allows the method to distinguish
between local regulatory effects and broader regulatory network influences, providing higher specificity for identifying
causal genes in regions of extensive LD. Our rationale is that if a gene is a true functional participant in a biological process
affecting a trait, its association with the trait should be evident from two independent sources. Its local regulation (cis-EC)
should be linked to the trait, and its regulation within a broader network (zrans-EC) should also be associated with the trait.
Therefore, a gene whose cis-EC and trans-EC are both significantly associated with a target trait is a much stronger causal
candidate than a gene with only one type of association. This dual-evidence strategy effectively filters out false positives
arising from LD, enabling the precise identification of causal genes, even in regions with weak GWAS signals. Furthermore,
by treating the expression of other genes as molecular phenotypes (e-traits), this method can efficiently map upstream and
downstream regulatory relationships, providing robust support for establishing reliable gene regulatory networks.

Software and datasets

A. Install required software

This protocol was tested in a Linux server environment. The core analyses rely on PLINK, GCTA, and several R packages
(Table 1). While originally developed using R v3.5.1, the protocol is expected to be compatible with recent versions (e.g.,
R 4.x). We recommend creating a dedicated Conda environment.

1. Create and activate a Conda environment:

# Create and activate a conda environment
conda create -n ecas_env r-base=3.5.1
conda activate ecas_env

2. Install R packages:
Within the activated conda environment, start R and run the following commands to install the required packages.

# Install from CRAN
install.packages ("fdrtool")

# Install from conda

conda install bioconda::bioconductor-snpstats
conda install -c conda-forge r-devtools
conda install -c conda-forge r-lmed

# Install from GitHub
devtools::install github ("cheuerde/cpgen", ref = "master", build vignettes=FALSE)

Table 1. Software and resources for data analysis.

Type Software/dataset/resource  Version (0N License Access/source

Software PLINK 1.9 Linux GPLv2  https://www.cog-genomics.org/plink/
Software GCTA 1.93.2beta Linux GPLv3 https://yanglab.westlake.edu.cn/software/gcta/
Software  snpStats 1.32.0 R GPLv2  Bioconductor

Software  cpgen 0.2 R GPLv3  GitHub

Software  fdrtool 1.2.16 R GPLv2 CRAN

B. Companion GitHub repository for protocol implementation

All scripts, example data, and detailed instructions required for this protocol are available in the following GitHub repository:
* Repository: https://github.com/Minglc/CisTrans-ECAS
+ DOI for the code: https://doi.org/10.5281/zenodo.10004834
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It is highly recommended to read the README.md file carefully before starting.

Procedure

A. Prepare and validate data formats
Before execution, ensure all input files conform to the formats described in the README.md file. All data frames must be

verified to contain valid column headers (header = TRUE) to ensure accurate variable identification and subsequent analysis
steps.

str(gffs);str(exp m);str(genes);str (K);str (pheno)
Key file requirements are summarized below in Table 2.

Table 2. Key input parameters and file formats for the CisTrans-ECAS analysis pipeline.

Parameter Input file format Content description

A data frame gffs containing gene annotation and including columns like
Gene, chr, start, end, etc.

A gene expression matrix exp_m with genes as rows and individuals as
--exp_file RData columns. Values should be normalized (e.g., log2-transformed and then
quantile-normalized TPMs (transcripts per kilobase million).

Directory containing genotype data in PLINK binary format (.bed, .bim, .fam),
preferably stored per chromosome.

The prefix pattern for genotype file names, using %s as a placeholder for the
chromosome number, e.g., for chrl mydata.bed, set this to %s_mydata.

--gffs file RData

--genodir Pathname

--gfile prefix String

--plinkdir Pathname Path to the PLINK executable.

--gctadir Pathname Path to the GCTA executable.

K file RData An RData file containing the kinship matrix K to correct for population
- structure.

A data frame pheno containing phenotypic data, with row names as individual
IDs and columns for different traits.

A character vector named genes containing a set of target gene IDs for the
cistrans_etwas.R analysis.

--pheno_file RData

--gene_file RData

B. Decompose gene expression into cis and trans components
This step uses GCTA to model gene expression based on cis-regulatory SNPs and partitions it into cis-EC and trans-EC.

1. Calculate expression components per chromosome.
In a Bash environment, execute the gcta_cis.R script for each chromosome.

Rscript gcta cis.R \
--gffs file=./test data/gffs.RData \
-—exp file=./test data/exp matrix.RData \
--genodir=./test data/ \
--gfile prefix=%s 529 test \
--plinkdir=/path/to/plink \
--gctadir=/path/to/gcta \
--out _dir=./test res/gcta cis \
--extend=1le5 \
--ncor=4
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Notes:

1. Computational resource benchmark: The decomposition of gene expression using the gcta_cis.R script is the most
computationally intensive step of this protocol. Runtime and memory usage depend on the number of individuals, the number
of genes per chromosome, the size of the cis-regulatory window (defined by --extend), and the number of CPU cores assigned
(--ncor). This script will generate an .RData result file for each chromosome.

2. To provide a practical benchmark, we report the resources used for our analysis of a dataset comprising 275 individuals
and 30,869 genes. The computation was parallelized by chromosome, with each task assigned to two CPU cores (--ncor=2).
The task with the highest demand was for Chromosome 1 (containing 4,146 genes), using a cis-window of 100 kb (--
extend=1e5). This single task required approximately 10.5 h to run and had a peak memory usage of 4.2 GB.

3. Users should note that these resources are required per parallel task (i.e., per chromosome). The total wall-clock time
can be significantly reduced if sufficient CPU cores are available to process all chromosomes simultaneously. We advise
users to estimate their needs based on the chromosome with the highest gene count, as it will likely represent the
computational bottleneck.

2. Merge results from all chromosomes.
The per-chromosome outputs from gcta cis.R must be merged using the merge cis_res.R script.

Rscript merge cis res.R --file dir=./test res/gcta cis

Note: This step generates four key merged files: gcta _cis_vc.RData (variance components of cis-heritability),
gceta_cis_cis.RData (matrix of cis-ECs), gcta_cis_trans.RData (matrix of trans-ECs), and gcta_cis_pred.RData (matrix of
cis-predicted expression).

C. Associate phenotypes with expression components to prioritize causal genes (cistrans-twas)

This step performs an association analysis between the calculated cis-EC, trans-EC, and agronomic traits to identify
candidate causal genes.

1. Run cistrans-twas.

Rscript cistrans_twas.R \
--gffs file=./test data/gffs.RData \
--K file=./test_data/Kinship.RData \
--pheno_file=./test data/pheno.RData \
--vc_file=./test res/gcta cis/gcta cis_vc.RData \
--cis file=./test res/gcta cis/gcta cis cis.RData \
--trans_file=./test res/gcta cis/gcta cis trans.RData \
--out_dir=./test res/cistrans_ twas \
--p_threshold=1.62e-6

Note: The --p_threshold of 1.62 % 10°° corresponds to a Bonferroni-corrected p-value of 0.05 for ~30,869 genes. This value
should be adjusted based on the number of genes in your dataset. The reason for this necessary adjustment is that the total
number of protein-coding genes in the genome varies significantly among different species, directly impacting the multiple
testing burden (N) used in the Bonferroni calculation. It is used to pre-filter genes with significant cis-heritability. This
threshold is calculated by dividing the nominal overall significance level (o), typically set at 0.05, by the total number of
independent hypothesis tests (Nwss), which, in this case, corresponds to the number of genes being tested for significant cis-
heritability in the dataset. For example, in H. sapiens, the number of protein-coding genes typically ranges from ~20,000 to
25,000, with the Puyeshoia Spanning from 2.50 x 105 to 2.00 x 10°°.

2. Interpret the results.
The script generates a .csv result file for each trait. Genes are ranked by their rank product value, which is the geometric
mean of the p-value ranks from the cis-EC and trans-EC associations. A smaller rank product indicates a higher likelihood
of being a causal gene.

Cite as: Yan, Y. et al. (2026). Identifying Causal Genes and Building Regulatory Networks in Crops Using the 5
CisTrans-ECAS Method. Bio-protocol 16(3): e5578. DOI: 10.21769/BioProtoc.5578



bl'o—protocol Published: Feb 05, 2026

D. Associate e-traits with expression components to identify regulatory factors (cistrans-etwas)

This step is used to construct gene regulatory networks by treating the expression of target genes as molecular phenotypes
(e-traits).

1. Run cistrans-etwas.

Rscript cistrans etwas.R \
--gffs file=./test data/gffs.RData \
--K file=./test data/Kinship.RData \
--exp file=./test data/exp matrix.RData \
--gene file=./test data/genes.RData \
--vc file=./test res/gcta cis/gcta cis vc.RData \
--cis file=./test res/gcta cis/gcta cis cis.RData \
--trans file=./test res/gcta cis/gcta cis trans.RData \
--out_dir=./test res/cistrans_etwas \
--p_threshold=1.62e-6

2. Interpret the results.

For each target gene in the gene file, a .csv result file is generated. Genes within this file are ranked by rank product. Top-
ranked genes are candidate upstream regulators of the target gene.

The output from the cistrans_etwas.R script is presented below, showing the results for LOC Os01g10490. Each tested gene
generates a .csv output file where rows represent associated genes and columns contain gene information and association
statistics. To facilitate visualization, the first two rows of the LOC_Os01g10490 result file have been transposed for display
(Table 3). Only the most relevant portion of the table is shown here; the full result file includes additional columns such as
chr, start, end, strand, beta_cis, se_cis, zscore_cis, g-value cis, beta_trans, se_trans, zscore trans, g-value trans, cis_rank,
trans_rank, and Qsymbols.

Table 3. Example output from cistrans_etwas.R analysis for the target gene LOC_0Os01g10490.

Gene LOC_0Os04g02500 LOC_0Os04g02150

cis Vg 0.58 0.54

cis_p 5.00E-17 5.00E-17

p-value_cis 1.43E-05 2.20E-05

p-value_trans 2.32E-28 3.46E-22

rank_product 2 4.47

Note G-patch domain containing protein expressed tRNA methyltransferase putative expressed

Data analysis

This section provides a case study demonstrating how to use the CisTrans-ECAS workflow to identify upstream regulators
of the known panicle architecture gene SDT (encoding miR156j).

1. Define the analysis objective and prepare the input file.

Our biological question is: "Which genes are potential upstream regulators of SDT (Gene ID: LOC_0s06g44034) in the rice
population?"

To answer this, we create an RData file named genes.RData containing a character vector gene with a single element:
"LOC_0s06g44034."

2. Execute the cistrans-etwas analysis.

We use genes.RData as the input for the --gene_file parameter and run the cistrans_etwas.R script as described in section D
of the procedure. The script will test for associations between the cis-EC and trans-EC of all other genes and the expression
level of SDT.

3. Interpret the output and identify the key candidate regulator.
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After the script completes, we identify strong candidate regulators by applying a highly stringent statistical filter to the
output file LOC_Os06g44034 cis_trans TWAS result.csv. Our criteria require a gene to show significant associations for
both its components: a cis-EC association p-value < 0.001 and a #rans-EC association FDR < 0.001. We then use the
rank product statistic to prioritize candidates that meet these thresholds.

Applying these stringent criteria yielded a focused list of only three high-confidence candidate regulators for SDT. To
illustrate the added value of our method, we compared their final ranking with their ranking based on cis-association alone,
as summarized in Table 4.

Table 4. High-confidence upstream regulators of SDT identified by CisTrans-ECAS and comparison with a cis-only
ranking.

Gene ID Gene symbol P-value_cis Rank_cis*  Q-value_trans Rank trans Final rank®
LOC _Os04g49150 OsMADS17 3.08E-05 26 7.86E-12 1 1
LOC _0Os06g06040 OsHOL2 1.18E-04 44 7.65E-05 78 2
LOC 0503222890 OsNug?2 6.08E-04 102 7.77E-04 203 3

#Rank_cis is the rank of the gene among all tested genes, sorted by its P-value_cis.
®Rank_trans is the rank of the gene among all tested genes, sorted by its O-value_trans.
¢ Final_rank is the rank of the significant candidate genes that passed the thresholds, sorted by the rank product statistic.

This comparison clearly demonstrates the power of the CisTrans-ECAS framework. Notably, all three candidates have
modest ranks based on cis-association alone (Rank_cis of 26, 44, and 102). A conventional approach relying solely on the
strength of cis-association would have likely overlooked these genes. Our method, by integrating the highly significant
trans-association signal, successfully "rescued" these potentially important genes and prioritized them for further
investigation.

As shown in Table 4, the MADS-box transcription factor OsMADS17 (Gene ID: LOC Os04g49150) emerged as the top-
ranked candidate (final rank = 1), making it a prime target for downstream validation. To visualize the dual evidence
supporting this top candidate, we plotted the correlation between the cis-EC and trans-EC values for OsMADS17 and the
raw expression levels of SDT, as shown in Figure 1.
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Figure 1. Association between OsMADS17 expression components and SDT expression. (A) Scatterplot showing the
positive linear correlation between cis-EC of OsMADS17 and the expression of SDT. (B) Scatterplot showing the positive
linear correlation between the trans-EC of OsMADS17 and the expression of SDT. In both panels, the red line indicates the
linear regression fit, and the gray shaded area represents the 95% confidence interval. The Pearson correlation coefficient
(R) and corresponding p-value are shown in the top-left side of each plot.
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In-depth interpretation of the biological significance

The results in Figure 1 provide two independent lines of computational evidence supporting the hypothesis that "OsMADS17
regulates SDT™:

* Significance of the cis-EC association (Figure 1A): Cis-genetic variants that regulate the expression of OsMADS!7 itself
also have a downstream effect that propagates to SDT. This implies a central role for OsMADSI7 in this regulatory cascade.
» Significance of the trans-EC association (Figure 1B): Distal genetic factors that regulate OsMADS17 also affect SDT. This
suggests that OsMADS17 and SDT likely co-exist within a larger regulatory module.

Conclusion and methodological advantages

A traditional eQTL analysis might have missed the OsMADS17 > SDT regulatory link due to insufficient statistical power.
By integrating dual evidence from both cis and trans components, the CisTrans-ECAS method greatly enhances the signal-
to-noise ratio, enabling the high-confidence capture of this true regulatory event. This computational prediction was
subsequently validated by molecular experiments in our published study, demonstrating the power of this protocol in
accurately reconstructing gene regulatory networks.

Distinguishing true causal genes from correlated neighbors remains a major challenge in complex trait analysis, especially
in crops with extensive LD. The CisTrans-ECAS framework addresses this by requiring independent support from both
local regulatory effects (cis-EC) and broader network influences (trans-EC), effectively filtering out LD-driven false
positives. The method accurately identifies previously validated pathways and strongly supports genes such as SDT and
OsMADS17 as causal factors, even at small-effect GWAS loci. Genes prioritized by this framework are therefore not merely
associated but functionally validated candidates supported by two independent regulatory angles. While association does
not imply causation, these findings provide novel insights and valuable resources for elucidating panicle development
regulatory networks.

Validation of protocol

The validity, reliability, and application of this protocol have been systematically confirmed by experiments in our Nature
Communications article [4].

Key validation points:

1. Successful identification and experimental validation of a causal gene:

* Prediction: Using the cistrans-twas workflow, the method identified OsMADS17 as a candidate causal gene for spikelets
per panicle (SPP) from a locus with weak GWAS signals.

« Validation: CRISPR/Cas9 knockout mutants of osmads7 exhibited a significant increase in SPP compared to wild type
(see Figure 7f-i in the original article), perfectly matching the computational prediction.

2. Accurate prediction and experimental confirmation of a gene regulatory network:

* Prediction: Using the cistrans-etwas workflow, the method predicted that OsMADS17 acts as an upstream transcriptional
activator of SDT.

* Validation: Transient expression assays and EMSA confirmed that the OsMADS17 protein directly binds to the SDT
promoter and activates its transcription (see Figure 7d—e and Supplementary Figure 16 in the original article).

3. Predictive power for phenotypes validated in an independent population:

* Finding: Favorable alleles at the cis-regulatory regions of identified candidate genes showed an additive effect. In an
independent population, the number of favorable alleles was highly correlated with the corresponding traits (see Figure 6h—
i in the original article).

* Significance: This demonstrates that the identified genes and loci have practical value as molecular markers for crop
improvement.
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General notes and troubleshooting

General notes

1. Data quality is paramount: The performance of this method relies on high-quality genotype, RNA-seq, and phenotype
data. We strongly recommend rigorous quality control and normalization of RNA-seq data (e.g., using PEER to correct for
hidden confounders).

2. Computational resources: The gcta_cis.R step is computationally intensive. It is advisable to run it on a high-performance
computing cluster and parallelize by chromosome. A detailed resource benchmark is provided in section B of the procedure
to help users estimate their needs.

3. Parameter selection: The --extend parameter (cis-region size) can be adjusted based on the LD decay distance of the
species. The --p_threshold affects the number of candidate genes and can be adjusted to balance stringency and discovery.

Troubleshooting

Problem 1: R script fails, reporting a missing package or function.

Possible cause: The R environment is not configured correctly, or dependencies are not fully installed.

Solution: Ensure you have followed the installation instructions in the Software and datasets section precisely. Create the
specified conda environment to ensure version compatibility. Verify package installation by loading them one by one in an
R session [e.g., library(snpStats)].

Problem 2: GCTA or PLINK error during geta_cis.R execution, with a "command not found" message.

Possible cause: The path specified by --gctadir or --plinkdir is incorrect, or the software lacks executable permissions.
Solution: Use absolute paths to the GCTA and PLINK executables. Ensure they have execute permissions via chmod +x
/path/to/gcta.

Problem 3: The final number of candidate genes is too large or too small.

Possible cause: The significance thresholds for the association analysis are too lenient or stringent.

Solution: In addition to ranking by rank product, consider applying a secondary filter based on the FDR-adjusted p-values
of cis_p and trans_p. For instance, start with a lenient threshold (e.g., FDR < 0.1) for discovery and then apply a stricter
cutoff (e.g., FDR < 0.01) to narrow down top candidates.
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