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Abstract 
 
Accurate profiling of soil and root-associated bacterial communities is essential for understanding ecosystem functions and 
improving sustainable agricultural practices. Here, a comprehensive, modular workflow is presented for the analysis of full-
length 16S rRNA gene amplicons generated with Oxford Nanopore long-read sequencing. The protocol integrates four 
standardized steps: (i) quality assessment and filtering of raw reads with NanoPlot and NanoFilt, (ii) removal of plant 
organelle contamination using a curated Viridiplantae Kraken2 database, (iii) species-level taxonomic assignment with Emu, 
and (iv) downstream ecological analyses, including rarefaction, diversity metrics, and functional inference. Leveraging high-
performance computing resources, the workflow enables parallel processing of large datasets, rigorous contamination 
control, and reproducible execution across environments. The pipeline’s efficiency is demonstrated on full-length 16S rRNA 
gene datasets from yellow pea rhizosphere and root samples, with high post-filter read retention and high-resolution 
community profiles. Automated SLURM scripts and detailed documentation are provided in a public GitHub repository 
(https://github.com/henrimdias/emu-microbiome-HPC; release v1.0.2, emu-pipeline-revised) and archived on Zenodo (DOI: 
10.5281/zenodo.17764933). 
 
 

Key features 
• Implement rigorous quality control (QC) of raw 16S rRNA Nanopore reads and sequencing controls. 
• Remove plant organelle contamination with a curated Kraken2 database. 
• Perform high-resolution taxonomic assignment of full-length 16S rRNA reads using Emu. 
• Integrate downstream statistical analyses, including rarefaction, PERMANOVA, and DESeq2 differential abundance. 
• Conduct scalable microbiome diversity and functional analyses with FAPROTAX. 
 
Keywords: Metabarcoding pipeline, Soil–plant-microbiome, 16S rRNA, Full-length amplicon, High-performance 
computing, Bioinformatics reproducibility 
 
This protocol is used in: Legume Science (2025), DOI: 10.1002/leg3.70069 
 
 

https://creativecommons.org/licenses/by-nc/4.0/
mailto:christopher.graham@sdstate.edu
https://github.com/henrimdias/emu-microbiome-HPC
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Graphical overview 
 

 
 
Overview of the long-read 16S rRNA microbiome workflow on high-performance computing (HPC). The pipeline 
comprises four steps and their primary inputs/outputs: (1) QC and filtering of Nanopore reads (NanoPlot, NanoFilt) 
producing per-sample QC reports and filtered FASTQ; (2) organelle removal with Kraken2 against a curated Viridiplantae 
(plastid and mitochondrial) database, yielding organelle-depleted FASTQ; (3) taxonomic assignment with Emu, generating 
four outputs, of which the species-level relative abundance table and the per-taxon read count table are used downstream; 
and (4) downstream ecological analyses that compute composition summaries and diversity metrics from these tables. Conda 
environments ensure reproducible tool execution on HPC, and log files from each step are retained for statistical summaries. 
 
 

Background 
 
Microbiomes play a central role in maintaining soil health and supporting plant development, influencing nutrient cycling, 
disease resistance, and overall ecosystem stability [1,2]. In both agricultural and natural systems, diverse microbial 
communities dominated by bacteria in soils and plant tissues are key drivers of biogeochemical processes such as carbon 
sequestration and nitrogen transformation [3]. Understanding the composition and functions of microbial communities 
provides a foundation for the development of new technologies, a guide for ecological management decisions, and the 
improvement of agricultural practices. However, accurate and consistent microbiome profiling remains a technical challenge, 
especially when dealing with complex environmental samples such as soil samples [4]. 
For bacterial community profiling, amplicon sequencing of the 16S rRNA gene remains a widely used, cost-effective 
approach for estimating community composition and diversity across environmental gradients and experimental 
manipulations [5]. In soils and plant compartments (rhizosphere, endosphere, and phyllosphere), where communities are 
both diverse and uneven, the ability to resolve taxa at finer ranks (e.g., species and, where possible, strain) improves the 
interpretability of ecological patterns and the portability of findings across studies [6,7]. Methodological advances have 
progressively increased taxonomic resolution and reproducibility in amplicon workflows. Early pipelines grouped reads into 
operational taxonomic units (OTUs) at fixed similarity thresholds, which simplified analysis but conflated biological and 
technical variation. However, these methods often fall short in delivering species-level resolution and are prone to variability 
across pipelines and datasets [8,9]. 
The shift toward exact sequence-based approaches (e.g., amplicon sequence variants, ASVs) reduced clustering artifacts for 
short-read data, improving comparability across experiments [10]. More recently, long-read sequencing has enabled 
recovery of near full-length 16S rRNA genes, potentially improving species-level assignment, disambiguating closely 
related taxa, and stabilizing ecological inferences in complex communities [11,12]. However, leveraging full-length reads 
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requires algorithms that can accommodate read length–specific error structures, model multi-mapping to reference databases, 
and estimate abundances without overinflating diversity [13]. Emu, a taxonomic profiling method based on expectation-
maximization (EM) to resolve ambiguous long-read mappings, yields compositional estimates that aim to be both accurate 
and robust for long-read 16S rRNA datasets [14]. 
Despite these advances, environmental microbiome studies still face challenges related to reproducibility and scale [5,15]. 
Reported community differences can be sensitive to choices in primer sets, reference databases, quality filters, and 
classification parameters, complicating meta-analysis and the accumulation of knowledge [8]. Soil and plant microbiomes 
also impose heavy computational demands due to complex experimental designs, due to high richness and the need for 
deeper sequencing to capture rare taxa, which can strain local computing resources [16]. High-performance computing (HPC) 
environments address scalability but are often perceived as inaccessible to new users and can themselves be sources of 
variability when software stacks, dependencies, or job-scheduling constraints differ across clusters [17,18]. For long-read 
16S rRNA specifically, the lack of shared, domain-tailored, and fully documented workflows that integrate Emu with 
transparent quality control and benchmarking makes it difficult to evaluate performance across soil and plant compartments 
and to reproduce results across independent laboratories. 
Consequently, there is a practical and conceptual gap: we lack a standardized, open, and reproducible long-read 16S rRNA 
pipeline that (i) is expressly designed for soil and plant microbiome questions, (ii) operationalizes best practices for quality 
control and reference-based inference with Emu, and (iii) scales predictably on HPC while producing portable, versioned 
outputs for downstream ecological analysis. Existing tutorials often target short-read OTU/ASV workflows or provide 
minimal guidance on how to tune long read–specific steps (e.g., length/quality screening, handling mapping, and database 
curation) under realistic environmental complexity [5,8,19]. Moreover, reproducibility guidance typically emphasizes 
containerization or environment capture but stops short of demonstrating that end-to-end results remain stable across 
different HPC clusters, settings, or modest updates to reference databases, factors that commonly change across institutional 
environments [15]. For interdisciplinary audiences, these limitations hinder the translation of microbiome insights into real 
practice interventions or ecological theory because conclusions may be contingent on opaque computational choices. 
To address this need, a reproducible Emu-based workflow is presented for soil and plant microbiome profiling, designed for 
HPC execution while remaining accessible to users with varying computational backgrounds. The workflow is organized 
into four steps: long-read 16S rRNA gene input validation, quality control suited to full-length reads, reference-informed 
taxonomic assignment with Emu, and standardized outputs for ecological analyses, each accompanied by versioned 
configurations and human-readable reports. Reproducibility is supported through declarative configuration files so that 
identical inputs produce consistent outputs across different clusters, and scalability is demonstrated. 
 
 

Software and datasets 
 
The complete set of databases, software tools, and custom scripts required to reproduce this workflow is listed in Table 1, 
along with version numbers, access information, and licensing details. All custom scripts are available in the public GitHub 
repository and archived on Zenodo (DOI: 10.5281/zenodo.17764933; release v1.0.2). 
 
Table 1. Databases, software, and custom scripts required to run the full Emu-based 16S microbiome workflow 

Type Software/dataset/resource Version Date License Access  

Database RefSeq (NCBI) Viridiplantae 
(mitochondria) 1.1 May, 2025  Free 

Database RefSeq (NCBI) Viridiplantae 
(plastid) 3.1 May, 2025  Free 

Database Emu prebuilt DB (OSF 56uf7) v3.4.5 May, 2023 CC-BY Free 
Database FAPROTAX database v1.2.12 May, 2025 CC-BY Free 
Software 1 NanoPlot 1.44.1 June, 2023 GPL-3.0 Free 
Software 2 NanoStat 1.6.0 June, 2023 GPL-3.0 Free 
Software 3 NanoFilt 2.8.0 June, 2023 GPL-3.0 Free 
Software 4 Kraken2 v.1.0 July, 2025 MIT Free 
Software 5 Emu v3.5.1 January, 2021 MIT Free 
Software 6 R (base) v4.4.2 October, 2025 GLP v2 Free 

Software 7 Python v3.8.0 October, 2019 BSD open 
source Free 
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Script 1 run_nanoplot_barcode.slurm 
10.5281/zenodo. 
17764933; v1.0.2 November, 2025 CC-BY Free 

Script 2 run_nanofilt.slurm 
10.5281/zenodo. 
17764933; v1.0.2 November, 2025 CC-BY Free 

Script 3 run_QC_summary.py 
10.5281/zenodo. 
17764933; v1.0.2 November, 2025 CC-BY Free 

Script 4 
download_plant_organelle_RefSe
q_fastas.sh 

10.5281/zenodo. 
17764933; v1.0.2 November, 2025 CC-BY Free 

Script 5 kraken2_add_build_db.slurm 10.5281/zenodo. 
17764933; v1.0.2 November, 2025 CC-BY Free 

Script 6 kraken2_classify_filter.slurm 10.5281/zenodo. 
17764933; v1.0.2 November, 2025 CC-BY Free 

Script 7 remove_kraken2_organelle_reads.
py 

10.5281/zenodo. 
17764933; v1.0.2 November, 2025 CC-BY Free 

Script 8 summarize_kraken2_reports.py 10.5281/zenodo. 
17764933; v1.0.2 November, 2025 CC-BY Free 

Script 9 run_emu.slurm 10.5281/zenodo. 
17764933; v1.0.2 November, 2025 CC-BY Free 

Script 10 collect_counts.py 10.5281/zenodo. 
17764933; v1.0.2 November, 2025 CC-BY Free 

Script 11 relab_to_counts.py 10.5281/zenodo. 
17764933; v1.0.2 November, 2025 CC-BY Free 

Script 12 downstream_microbiome.r 10.5281/zenodo. 
17764933; v1.0.2 November, 2025 CC-BY Free 

Script 13 emu-to-faprotax.py 10.5281/zenodo. 
17764933; v1.0.2 November, 2025 CC-BY Free 

Script 14 collapse_table.py 10.5281/zenodo. 
17764933; v1.0.2 November, 2025 CC-BY Free 

 
 

Procedure 
 
Part I. Before you begin 
 
Before initiating the four steps, it is advisable to organize the computational environment, define analysis parameters, and 
outline the overall workflow (see GitHub repository: https://github.com/henrimdias/emu-microbiome-HPC). The graphical 
overview presents a flowchart of the Emu pipeline, tracing the path from demultiplexed raw Oxford Nanopore FASTQ files 
through quality control, organelle filtering, expectation-maximization taxonomic assignment, and downstream ecological 
analyses. The following sections detail the principal considerations and options required for smooth and reproducible 
execution of the protocol. 
 
Note: This protocol focuses exclusively on the computational analysis of Oxford Nanopore 16S reads and begins at the stage 
of base-called, demultiplexed FASTQ files. Procedures for base calling and demultiplexing (e.g., using Dorado, 
https://github.com/nanoporetech/dorado), as well as wet-lab steps for DNA extraction, library preparation, and sequencing, 
are outside the scope of this protocol. 
 
A. Set up a directory structure 
 
1. Create the project in a high-performance working space (often named scratch or work) for large, input/output-heavy runs, 
and keep code, configs, and finalized outputs in persistent project storage (often named project, groups, or shared). The 
layout may be created manually or, preferably, cloned from the GitHub template with paths adjusted as needed. 
 
git clone --depth 1 --filter=blob:none --sparse https://github.com/henrimdias/emu-
microbiome-HPC.git 
cd emu-microbiome-HPC 

https://github.com/henrimdias/emu-microbiome-HPC
https://github.com/nanoporetech/dorado


 

 

Cite as: Dias, H. M. et al. (2026). Reproducible Emu-Based Workflow for High-Fidelity Soil and Plant Microbiome 
Profiling on HPC Clusters. Bio-protocol 16(2): e5577. DOI: 10.21769/BioProtoc.5577 

5 

Published: Jan 20, 2026 

git sparse-checkout set emu_pipeline 
Note: Retention and backup policies for the working space vary by cluster; check the cluster site docs. 
 
B. Create and manage Conda environments 
 
1. Maintain separate environments (nanotools_env, preemu_env, emu_env, faprotax_env) to avoid software conflicts. 
2. Create each environment from YAML files provided in the repository (on the HPC login node). 
nanotools_env:  
cd yml_files 
conda env create -f  nanotools_env.yml   
conda activate nanotools_env 
 
preemu_env:  
cd yml_files 
conda env create -f preemu_env.yml 
conda activate preemu_env 
 
emu_env:  
cd yml_files 
conda env create -f emu_env.yml 
conda activate emu_env 
 
faprotax_env:  
cd yml_files 
conda env create -f faprotax_env.yml 
conda activate faprotax_env 
 
Note: YAML files ensure convenience and reproducibility. Alternatively, each protocol step also includes a one-liner for 
installing only the required tools without using YAMLs. Both approaches are valid. 
 
Note: If Miniconda is not available on the cluster, install a local copy in your home directory and use it in all subsequent 
SLURM jobs. For example, on the login node: 
 
cd $HOME 
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh 
bash Miniconda3-latest-Linux-x86_64.sh -b -p $HOME/miniconda3 
source $HOME/miniconda3/etc/profile.d/conda.sh 
conda init bash   # optional 
After installation, make sure all SLURM scripts load this installation, e.g.: 
source $HOME/miniconda3/etc/profile.d/conda.sh 
conda activate <env_name> 
 
C. Configure SLURM array jobs 
 
Configure these settings in all SLURM files for each module, as illustrated in step A3 from Part II. 
 
1. Use array indexing (e.g., --array=1-N) to parallelize per-sample steps. 
2. Adjust memory (e.g., --mem=4G-24G) and CPU cores (e.g., --cpus-per-task=1-8) according to the demands of each tool 
(see Part I, section E).  
3. Choose the recommended partition following the cluster policies (e.g., --partition=compute). 
4. Change the directories following the recommended paths. 
5. If Miniconda is not available, install it (e.g., in $HOME/miniconda3) and use this path as the source directory in all 
SLURM job scripts. 
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D. Reference databases 
 
1. Select a reference database and fix its version to ensure stable and reproducible taxonomic assignments. 
2. Record the database name, version, download date, source/DOI, and checksum. 
3. By default, run the protocol with the Emu prebuilt database (OSF project 56uf7). 
4. When customization is necessary, rebuild an Emu database from a pinned NCBI taxonomy following the Emu 
documentation: https://github.com/treangenlab/emu. 
 
Note: A summary of widely used 16S rRNA gene reference databases, their most recent releases, and Emu-specific 
considerations to guide selection and version pinning is available in Table 2. 
 
Caution: As new releases add sequences or rename taxa, identical reads may be classified differently. Version pinning 
avoids inconsistencies across runs. 
 
Table 2. Common 16S rRNA gene reference options for Emu workflows 

Database Scope/source Latest release (version 
and date) Notes for Emu Reference 

Emu prebuilt 
(OSF 56uf7) 

Curated 16S bundle for Emu 
(NCBI/RefSeq) 

OSF item 
“emu_default.tar.gz” last 
modified Mar 13, 2023 

Ready-to-use [14] 

SILVA SSU Broad rRNA (SSU/LSU) 
curation 138.2, Jul 11, 2024 Custom Emu build required; 

SILVA v138.1 ready-to-use [20] 

Greengenes2 Genome-informed reference 
tree and taxonomy 2024.09, Oct 8, 2024 Custom Emu build required [21] 

RDP Classical 16S 
taxonomy/training data Trainset 19, Jul 2023 Custom Emu build required; 

RDPv11.5 ready-to-use [22] 

GTDB (R226) Genome-based taxonomy with 
16S representatives R226, Apr 16, 2025 Custom Emu build required [23] 

 
E. Hardware preparation 
 
The amount of RAM required depends on the dataset size and the complexity of the analysis. For the workflow described, 
which involves moderately complex steps, 16 GB of RAM is sufficient (Table 3). 
 
Table 3. Recommended hardware and scheduler settings for each module of the workflow 

Module/step Typical use case (as 
validated here) 

Recommended 
CPUs and RAM 
(per task) 

Example SLURM directives Typical walltime 
(for ~18 samples) 

QC and filtering of 
Nanopore reads 

Full-length 16S Nanopore 
reads; 6 demultiplexed 
FASTQ files 

4 CPUs, 16 GB 
RAM 

#SBATCH --
partition=moderate* 
#SBATCH --cpus-per-task=4 
#SBATCH --mem=16G 
#SBATCH --time=02:00:00 

~20–40 min 

Organelle database 
build (Kraken2) 

Build Viridiplantae 
chloroplast + 
mitochondria Kraken2 
database 

16 CPUs, 32–64 GB 
RAM 

#SBATCH --
partition=moderate* 
#SBATCH --cpus-per-
task=16 #SBATCH --
mem=32G #SBATCH --
time=04:00:00 

~60–120 min 

Organelle 
classification and 
read filtering 

Classify and remove 
organelle reads from 6 
FASTQ files 

8 CPUs, 16 GB 
RAM per array task 

#SBATCH --
partition=moderate*  
#SBATCH --array=1-18 
#SBATCH --cpus-per-task=8 
#SBATCH --mem=16G 
#SBATCH --time=02:00:00 

~30–60 min total 

https://github.com/treangenlab/emu
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Taxonomic 
assignment with 
Emu 

Emu profiling of 
organelle-depleted full-
length 16S reads 

8 CPUs, 16 GB 
RAM per array task 

#SBATCH --
partition=moderate*  
#SBATCH --array=1-18 
#SBATCH --cpus-per-task=8 
#SBATCH --mem=16G 
#SBATCH --time=04:00:00 

~30–60 min total 

Downstream 
community and 
functional 
analyses 

Alpha/beta diversity, 
ordination, DESeq2, 
FAPROTAX 

4 CPUs, 16 GB 
RAM 

#SBATCH --
partition=moderate*  
#SBATCH --cpus-per-task=4 
#SBATCH --mem=16G 
#SBATCH --time=02:00:00 

~30–90 min 

 
Note: Partition names (e.g., --partition=moderate) are cluster-specific and may differ across HPC systems. The 
settings shown here correspond to the compute infrastructure of the SDSU HPC and should be adapted to the partitions and 
resource limits available on other clusters.  
For reference, check https://help.sdstate.edu/TDClient/2744/Portal/KB/ArticleDet?ID=159685. 
 
F. Controls 
 
Controls must span the entire workflow, not only the experimental design. Include extraction blanks and no-template PCR 
controls and process them through filtering, organelle depletion, taxonomic assignment, and downstream analyses; use at 
least one positive control (mock community) to benchmark length/quality thresholds and expected taxonomic recovery. Use 
blanks to identify contaminant taxa (e.g., blank-prevalent features) and to set acceptance ranges; report control outcomes 
with the main results and retain raw control tables for auditing. These practices are essential for low-biomass contexts and 
to avoid reagent/kit contaminants driving patterns (for a review, see [24]). 
 
 
Part II. Preprocessing full-length 16S rRNA reads 
 
This workflow performs automated quality control and filtering of full-length 16S rRNA Nanopore reads using a single 
SLURM pipeline that integrates NanoPlot, NanoFilt, and QC summary consolidation. The unified design minimizes manual 
editing by requiring only one configuration update at the top of the SLURM file before execution. 
 
Timing: ~30 min (based on 18 .fastq files ranging between 150 and 220 MB). 
Minimum disk space: ~8 GB. 
 
A. Launch the unified nanotools pipeline 
 
1. Ensure that all base-called, demultiplexed FASTQ files are placed in the raw-reads directory (e.g., 
emu_pipeline/raw_data) and follow a consistent naming pattern, such as barcodeXX.fastq.gz (for example, 
barcode01.fastq.gz, barcode02.fastq.gz) or user-defined sampleID.fastq.gz names that match the 
sample identifiers in the metadata table. The SLURM array scripts parse these filenames to derive sample IDs and map them 
to metadata. 
2. Activate the Conda environment. 
 
conda activate nanotools_env 
 
3. Open the SLURM file run_nanotools_pipeline.slurm and edit only the configuration section at the top of the file. Specify 
desired directories for raw reads, filtered reads, QC reports, and summary outputs: 
 
# Example configuration block 
RAW_DIR="/scratch/project/raw" 
FILTERED_DIR="/scratch/project/filtered" 
QC_DIR="/scratch/project/qc" 
SUMMARY_DIR="/scratch/project/summary" 

https://help.sdstate.edu/TDClient/2744/Portal/KB/ArticleDet?ID=159685
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SCRIPT_QC_SUMMARY="/home/user/scripts/run_QC_summary.py" 
 
# Filtering parameters 
MIN_LEN=1000 
MAX_LEN=1850 
MIN_QUAL=10 
 
Note: The script automatically detects files with extensions .fastq or .fastq.gz. There is no need to modify the file search 
pattern manually.  
 
4. Submit the SLURM job to run the entire workflow. 
 
sbatch run_nanotools_pipeline.slurm 
 
Note: This single command executes the following steps sequentially: 
(i) NanoPlot: generates per-sample quality control (QC) reports for raw reads. 
(ii) NanoFilt: filter reads by quality and length thresholds. 
(iii) NanoPlot (filtered): regenerates QC reports after filtering. 
(iv) QC summary: consolidates NanoStat metrics across samples and stages.  
 
B. Filtering logic and parameters 
 
Reads are filtered to 1,000–1,850 bp (Q ≥ 10) to enrich for full-length 16S rRNA gene amplicons (~1,450–1,600 bp) and 
exclude truncated (≤1,000 bp) and concatemeric or anomalously long (≥1,850 bp) reads, improving classification accuracy 
and comparability [25]. 
 
Expected outputs:  
(i) Filtered FASTQ files (*_filtered.fastq.gz) 
(ii) NanoPlot QC directories (/nanoplot_reports/raw and /nanoplot_reports/filtered) 
(iii) Intermediate NanoStat summaries 
 
C. Consolidating and visualizing QC reports 
 
After the pipeline completes, the QC summary script automatically collects all NanoStat reports (raw and filtered) and 
merges them into an integrated summary. 
 
If needed, the script can be run independently: 
 
python run_QC_summary.py –-inpunt /put_the_directory –output /put_the_directory 
 
Expected outputs:  
(i) sequencing_summary.csv: Tables of all key NanoStat metrics (mean read length, quality, read count, N50, etc.). 
(ii) QC_summary_plots.pdf: Multi-page PDF showing side-by-side comparisons (raw vs. filtered) per sample. 
 
D. Quality verification and acceptance criteria 
 
1. Confirm that read-length N50 values fall within the expected amplicon range (1,450–1,550 bp).  
2. Ensure that read retention after filtering is between 60% and 90%. 
3. Examine QC plots to confirm that the filtering step reduces truncated reads without excessive loss of valid reads. 
 
Note: If results deviate (e.g., severe loss or unexpected quality shifts), adjust the parameters (MIN_LEN, MAX_LEN, or 
MIN_QUAL) in the configuration section of run_nanotools_pipeline.slurm and resubmit the job. See Table 2 for 
troubleshooting guidance if acceptance criteria are not met. 
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Caution: After filtering, the QC reports should show a controlled reduction in total read count and a reshaped quality/length 
distribution that reflects the chosen thresholds. If results deviate (e.g., abrupt read loss), adjust the parameters in 
run_nanofilt_barcodes.slurm. 
 
 
Part III. Organelle contamination removal  
 
Detect and remove organelle (chloroplast and mitochondrial) contamination from full-length Nanopore 16S rRNA reads. 
This step preserves accurate bacterial and archaeal community profiles for downstream Emu-based taxonomic analysis by 
eliminating host-derived organelle sequences. Reads are classified with Kraken2 [26] against a curated organelle reference 
database [27], and organelle-assigned reads are discarded. The result is a high-confidence, organelle-free read set for Emu, 
improving accuracy and reproducibility in plant and soil microbiome studies. 
 
Timing: ~30–60 min (based on 18 .fastq files ranging between 150 and 220 MB). 
Minimum disk space: ~12 GB. 
 
A. Download curated RefSeq organelle genomes 
 
1. Download curated chloroplast and mitochondrial FASTA files to construct the Kraken2 database. Run the organelle 
genome download script. Update and check pathways on the script before running the code. 
 
bash download_plant_organelle_RefSeq_fastas.sh 
 
2. Verify downloaded and decompressed files.  
 
ls -lh /$USER/scratch/emu_pipeline/kraken_db/ 
 
Note: These files are multi-genome FASTAs curated by NCBI containing a wide range of plastid and mitochondrial 
sequences from green plants (May 2025 release). 
 
B. Build the organelle database with Kraken2 
 
1. Activate the Conda environment. 
 
conda activate preemu_env 
 
2. Download taxonomy files. 
 
kraken2-build --download-taxonomy –-db 
\/$USER/scratch/kraken_env/db/kraken_organelle_db 
 
3. Build the database with curated references using SLURM. Construct a Kraken2 organelle database from the curated 
RefSeq chloroplast and mitochondrial FASTA files downloaded in the previous step.  
 
sbatch kraken2_add_build_db.slurm 
 
Expected database files: hash.k2d; opts.k2d; taxo.k2d; seqid2taxid.map. 
 
C. Identify and filter organelle contamination 
 
1. Use this database to classify reads and remove organelle-derived sequences from environmental full-length 16S rRNA 
gene datasets. The provided script applies Kraken2 using the default nucleotide parameters (k-mer length k = 35, minimizer 
length ℓ = 31, minimizer spaces s = 7), with a conservative confidence threshold of --confidence 0.6 [28]. Run the provided 
SLURM script: 
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sbatch kraken2_classify_filter.slurm 
 
2. Summarize contamination levels. 
 
python summarize_kraken2_reports.py \ 
  --input_dir /path/to/reports/ \ 
  --output_file /path/to/output/kraken_contamination_summary.tsv 
 
Expected outputs: Per-sample classification outputs: *.kraken, *.report.txt; Organelle-depleted reads: *.fastq.gz; 
kraken_contamination_summary.tsv. 
 
3. After depletion, confirm that bacterial reads dominate root libraries [29]. Check that organelle contamination does not 
exceed 15%–20% of classified reads. 
4. Verify that the reads loss after filtering does not exceed 30%. Check code description in: 
 
remove_kraken2_organelle_reads.py.  
 
5. Confirm that database provenance checks complete without errors, checking that report files are not empty or abnormal. 
 
Note: Empty or abnormal report.txt files, unusually high organelle reads, or sharp bacterial losses (>30%) indicate 
potential database mismatch, over-filtering, or contamination. See Table 6 (Troubleshooting) for likely causes and 
corrective actions. 
 
 
Part IV. Taxonomic assignment using Emu 
 
Timing: ~30–60 min (based on 18 .fastq files ranging between 150 and 220 MB). 
Minimum disk space: ~2 GB. 
 
A. Prepare the Emu database 
 
1. Download the prebuilt Emu database from OSF (https://osf.io/56uf7/) and set the directory path. 
 
Note: The prebuilt Emu database requires approximately 90 MB of disk space. 
 
2. Alternatively, build a custom database following the Emu GitHub instructions (https://github.com/treangenlab/emu; see 
Table 1) [30]. 
 
B. Run Emu with SLURM batch arrays 
 
1. Inside the run_emu.slurm script, each array task calls Emu using a template command such as: 
 
# ----------------------------------- 
# 6. Run EMU abundance profiling 
# ----------------------------------- 
echo "Running EMU on: $FASTA_FILE" 
emu abundance \ 
  --db "$EMU_DB_DIR" \ 
  --output-dir "$BARCODE_OUTPUT" \ 
  --keep-counts \ 
  --keep-read-assignments \ 
  "$FASTA_FILE" 
 

https://osf.io/56uf7/
https://github.com/treangenlab/emu
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Note: Here, EMU_DB_DIR points to the prebuilt Emu database (see Part IV, section A), FASTA_FILE is the organelle-
depleted full-length 16S rRNA gene file for a given barcode, and BARCODE_OUTPUT is a per-sample directory where 
Emu writes relative abundance tables (*_rel-abundance.tsv) and read assignment distributions (*_read-assignment-
distributions.tsv). It does not apply an additional minimum read-length filter inside Emu because length filtering to 1,000–
1,850 bp (Q ≥ 10) is already enforced upstream with NanoFilt. 
 
2. Activate the Conda environment. 
 
conda activate emu_env 
 
3. Before running the job, confirm that the input directory contains organelle-depleted FASTQ files from the previous step, 
the Emu database is downloaded and indexed, and all directory paths in the SLURM script match the HPC environment. 
4. Submit the SLURM job script: 
 
sbatch run_emu.slurm 
 
5. Monitor the job array to confirm that each sample (barcode) runs as an independent task. 
6. Typically, >95% of mapped reads should be assigned to a bacteria taxon. 
 
Expected outputs: *_rel-abundance.tsv (taxa-level relative abundances); *_read-assignment-distributions.tsv (read-level 
mapping details). 
 
C. Combine per-sample taxonomic tables 
 
1. Merge all per-sample outputs into a single wide-format abundance table using the combine-outputs command: 
 
emu combine-outputs <directory_path> <rank> 
 
Expected outputs: Combined abundance table (e.g., species_rel-abundance.tsv) 
 
Note: This function generates a single table that contains the relative abundances of all Emu output files within a specified 
directory. It automatically selects all .tsv files in the directory that contain “rel-abundance” in their filename. It is also 
possible to combine tables at a specific taxonomic rank by specifying one of the following: tax_id, species, genus, family, 
order, class, phylum, or superkingdom. For more details, visit the GitHub repository: https://github.com/treangenlab/emu. 
 
Caution: Regarding Emu, the quality of taxonomic assignment is evaluated based on the proportion of classified reads and 
the performance of controls. For example, in complex soils, low read assignment may indicate high error rates or gaps in 
the database rather than true biological absence [31]. If Emu fails to complete, expected output tables are missing, assignment 
rates are unexpectedly low at the genus or species level, array indexing skips or mislabels samples, or database 
paths/provenance are incorrect, consult the troubleshooting guidance for likely causes and corrective actions (see Table 6). 
 
D. Aggregate Emu read-count statistics 
 
1. After Emu completes, collect .out files generated per barcode (e.g., barcode01.out) that report three fields: 
Unmapped_Read_Count, Mapped_Read_Count, and Unclassified_Mapped_Read_Count. Place all .out files in a single 
directory. 
2. Aggregate these counts across barcodes into one table using the provided script: 
 
python collect_counts.py /path/to/directory 
 
3. Convert relative abundances into estimated raw read counts per barcode using the following script: 
 
python relab_to_counts.py summary_counts.tsv relative_abundance.tsv raw_counts.tsv 
--strict-sum 
 

https://github.com/treangenlab/emu
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Note: Diversity indices that require integer counts (e.g., Chao1, rarefaction, DESeq2) must use these derived counts, not 
proportions. 
 
 
Part V. Microbiome downstream analyses 
 
Timing: ~60–120 min (based on 18 samples). 
Minimum disk space: ~4 GB. 
 
In the final stage of the workflow, downstream microbial community analysis is carried out in R, drawing on established 
ecological tools such as the vegan package [32]. Abundance tables and metadata provide the foundation for exploring 
sequencing depth, diversity, and community structure. Analyses typically include rarefaction curves, alpha diversity indices 
(e.g., Shannon, Simpson, Pielou’s evenness, Chao1), and beta diversity ordinations such as PCoA on Bray–Curtis 
dissimilarities. Differential abundance analysis can be performed with DESeq2 [33] using its internal size-factor 
normalization and false discovery rate (FDR)-adjusted P-values to identify taxa that change significantly across experimental 
groups. These are complemented by visualizations of taxonomic composition across selected ranks, while functional insights 
can be inferred with FAPROTAX [34]. Together, these approaches offer a flexible framework that can be readily adapted 
to a wide range of experimental designs. Table 4 summarizes the R version and core packages, together with their version 
numbers and roles in the workflow.  
 
Table 4. R environment and packages used for microbiome downstream analyses 

Package Version Role in downstream workflow 
data.table 1.15.4 Fast import/export of metadata, count tables, distance matrices, and diagnostic CSV files. 

dplyr 1.1.4 
Data wrangling for metadata and abundance tables, grouping and summarizing for plots and 
statistics. 

tidyr 1.3.1 Reshaping tables for taxonomic composition plots and diversity summaries. 
forcats 1.0.1 Factor management (ordering and relabeling groups and taxa for consistent plotting). 

ggplot2 1.15.4 
Core plotting engine for rarefaction curves, composition barplots, alpha and beta diversity 
visualizations. 

ggrepel 0.9.5 Non-overlapping sample labels in PCoA and NMDS plots. 

ggpubr 0.6.0 
Statistical annotations on alpha diversity boxplots (global tests, pairwise comparisons, 
significance labels). 

vegan 2.7.1 
Ecological analyses: rarefaction (rarefy), diversity indices, distance matrices (Bray, Jaccard), 
ordinations (NMDS), PERMANOVA, and betadisper. 

rstatix 0.7.2 
Assumption testing (Shapiro, Levene), ANOVA/Kruskal–Wallis, and post-hoc tests 
(Tukey/Dunn) for alpha diversity. 

broom 1.0.5 Tidy summaries of model outputs (e.g., ANOVA tables) for export to CSV. 
stringr 1.5.1 String manipulation and cleaning of labels where needed. 
svglite 2.1.3 High-quality SVG export for all figures (used by save_plot_multi). 
ape 5.8 PCoA with Cailliez correction as a robust fallback when cmdscale fails; phylogenetic utilities. 

 
Note: The downstream R script expects two main input tables: 
(i) Metadata table (metadata.tsv): tab-delimited, with one row per sample and at least the following columns: 
• SampleID (unique sample identifier; must match column names in the count table). 
• Group (experimental group or treatment). 
(ii) Count table (counts.tsv): tab-delimited matrix with the following: 
• One row per taxon (e.g., species or genus). 
• One column per sample (SampleID). 
• An initial column with Taxon (or Species) storing the taxonomic label. 
(iii) Relative abundance table (relative_counts.tsv): same structure as the count table, but with remaining cells containing 
relative abundances (e.g., output from Emu pipeline) instead of raw counts. 
 
An example dataset (example_metadata.tsv, example_counts.tsv) that satisfies these requirements is provided in the GitHub 
repository (under emu_pipeline/example_data/) and in the Zenodo archive. Users can run the full downstream script on this 
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example dataset to verify that their installation and configuration are working before analyzing their own data. 
 
A. Run the downstream analysis workflow in R 
 
1. Download downstream_microbiome.R from the repository. 
2. Open and edit the configuration block at the top of the script: set metadata_path, raw_counts_path, rel_abund_path, and 
EXPORT_DIR. Confirm sample_id_col, group_col, and tax_level match the metadata table. 
 
# ============================================================ 
# 1) User configuration (edit for a given dataset) 
# ============================================================ 
 
# Path to metadata table (one row per sample) 
metadata_path   <- "metadata.tsv" 
 
# Path to raw count table (features in rows, samples in columns) 
raw_counts_path <- "raw_counts.tsv" 
 
# Path to relative abundance table 
rel_abund_path  <- "raw_counts.tsv" 
 
# Column name in metadata containing sample IDs 
sample_id_col   <- "SampleID" 
 
# Column name used as the main grouping factor (for colors / statistics) 
group_col       <- "Group" 
 
# Target taxonomic rank for composition plots (case-insensitive). 
# Typical choices: "kingdom", "phylum", "class", "order", "family", "genus", 
"species". 
tax_level       <- "genus" 
 
# Number of most abundant taxa to display explicitly in composition plots 
topN_taxa       <- 16 
 
# Number of interpolation steps for rarefaction curves 
raref_steps     <- 100 
 
# Output directory for all plots and tables 
EXPORT_DIR <- "downstream_microbiome_output" 
dir.create(EXPORT_DIR, showWarnings = FALSE, recursive = TRUE) 
 
# Optional: preprocessing for alpha diversity (filters / rarefaction on raw counts) 
filter_for_alpha <- FALSE   # if TRUE, apply filters below (must be used for Chaos1) 
min_lib_alpha    <- 1000    # minimum reads per sample for alpha analyses 
min_prevalence   <- 2       # minimum number of samples in which a feature must be 
present 
min_total_count  <- 10      # minimum total counts per feature (across all samples) 
rarefy_for_alpha <- FALSE   # if TRUE, perform rarefaction for alpha analyses 
rare_depth_alpha <- NA      # if NA, uses minimum library size after filtering 
 
# Optional: minimum library size for inclusion in beta diversity 
min_lib_beta     <- 1       # 1 removes only zero-library samples 
 
3. Run the script locally in RStudio or from the command line: 
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Rscript downstream_microbiome.R 
 
Expected outputs: PNG/SVG figures (rarefaction, composition bar charts, alpha diversity, PCoA/NMDS) and CSV tables 
(alpha metrics, PERMANOVA/betadisper results, DESeq2 outputs). 
 
Note: The script is fully commented to support customization and guides users through a complete downstream workflow, 
including rarefaction curves for sequencing depth assessment, taxonomic composition plots at chosen ranks, alpha diversity 
metrics (S_obs, Chao1, Shannon, Simpson, Pielou’s evenness), beta diversity ordinations (Bray, Jaccard, Aitchison with 
PCoA/NMDS), PERMANOVA and dispersion testing (betadisper), and differential abundance analysis with DESeq2 using 
size-factor normalization and FDR-adjusted results. 
 
B. Assign putative functions with FAPROTAX 
 
1. Download the FAPROTAX database (v1.2.12, last updated May 2025; [34]) from: 
http://www.loucalab.com/archive/FAPROTAX/lib/php/index.php?section=Download  
2. Activate the Conda environment. 
 
conda activate faprotax_env 
 
3. Prepare the input table with taxonomy, sample IDs, and counts/abundances. Convert Emu outputs using: 
 
python emu-to-faprotax.py relative_abundance.tsv faprotax_relative_abundance.tsv 
 
4. Run FAPROTAX in tabular mode to generate function-by-sample profiles: 
 
python collapse_table.py \ 
-i faprotax_relative_abundance.tsv \ 
-o func_faprotax_relative_abundance.tsv \ 
-g FAPROTAX.txt -d "taxonomy" -c "#" -v 
 
Expected outputs: func_faprotax_relative_abundance.tsv (function-by-sample matrix). 
 
Note: FAPROTAX accuracy depends on the quality of taxonomic assignments. Misclassifications at the genus/species level 
may propagate into functional predictions. 
 
 

Validation of protocol 
 
This protocol has been used and validated in Dias et al. [35]. The study applied the workflow to full-length 16S rRNA 
Nanopore datasets from seasonal yellow pea varieties, demonstrating organelle read removal, Emu-based taxonomic 
assignment, and downstream ecological analyses. Detailed results are presented in Figure 2 (alpha diversity metrics) and 
Figure 4 (community composition profiles) of [35]. 
 
 

General notes and troubleshooting 
 
Before inspecting module-specific issues, it is recommended that users perform a few high-level checks on read retention, 
organelle removal, taxonomic assignment rates, and diversity-ready sampling depth. Table 5 summarizes indicative sanity-
check thresholds based on the validation dataset. 
  

http://www.loucalab.com/archive/FAPROTAX/lib/php/index.php?section=Download
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Table 5. Quick sanity-check thresholds across the workflow 

Workflow step Metric Indicative threshold 
(validation dataset) How to check  

QC and NanoFilt 
filtering 

Post-NanoFilt read 
retention 

≥70%–80% of reads retained 
after quality and length 
filtering 

Compare total reads before and after NanoFilt 
using NanoStat summaries or per-sample 
FASTQ statistics. Large losses may indicate 
overly stringent filters or poor runs. 

Organelle 
removal 
(Kraken2) 

Organelle 
contamination 
(before/after) 

Initial organelle fraction often 
~5%–40%; after Kraken2 
filtering, residual organelle 
reads should be <1% 

Use kraken2 reports or 
summarize_kraken2_reports.py to compute the 
proportion of organelle-assigned reads pre- and 
post-filtering. 

Taxonomic 
assignment 
(Emu) 

Classification/mapping 
rates 

≥70% of reads mapped to the 
Emu database and ≥60% 
assigned at least to the genus 
level for high-quality runs 

Inspect Emu summary outputs for per-sample 
mapping and classification rates; low values 
may indicate database gaps or poor read quality 
rather than true absence. 

Input depth for 
diversity 

Minimum counts per 
sample + rarefaction 

Samples with <5,000–10,000 
16S rRNA reads after filtering 
and strongly non-saturating 
rarefaction curves should be 
treated cautiously or excluded 
from alpha/beta analyses 

Use the downstream R script to (i) inspect per-
sample read counts and (ii) inspect rarefaction 
curves: samples whose curves do not approach 
a plateau at the chosen depth likely have 
insufficient coverage. 

Beta diversity 
and 
PERMANOVA 

Dispersion vs. group 
centroids 

Significant heterogeneity of 
dispersion (betadisper p < 
0.05) implies PERMANOVA 
results must be interpreted 
with caution 

Examine vegan::betadisper and its permutation 
test (permutest) alongside PERMANOVA 
(adonis2); unequal dispersion can drive 
apparent group separation. 

 
Common problems, their likely causes, and practical solutions are summarized in Table 6. This table covers issues that arise 
across the pipeline, including key references. 
 
Table 6. Common pitfalls in microbiome analysis: quick diagnostics and solutions 

Nature Problem Possible cause Solution Key 
references 

Experimental No plateau in rarefaction 
Insufficient sequencing 
depth; highly uneven 
communities 

Increase sequencing depth or pool 
runs or use coverage-based 
comparisons; reserve rarefaction for 
QC. 

[36] 

Statistical Rarefaction curves with 
irregular “kinks” 

Residual 
chimeras/contaminants; 
batch effects 

Apply contaminant/chimera 
filtering; evaluate batch effects; 
remove outlier samples if justified. 

[37] 

Statistical 
Comparing groups at 
minimum depth drops 
many samples 

The minimum read 
threshold excludes many 
libraries 

Use a higher common coverage 
rather than the minimum; report 
sensitivity analyses (e.g., 50k vs. 
100k reads). 

[38] 

Statistical 
Rarefaction used as 
normalization for 
differential abundance 

Methodological misuse 
Use size-factor or compositional 
methods (e.g., DESeq2); limit 
rarefaction to alpha/QC. 

[39] 

Statistical 
PERMANOVA 
significant with unequal 
dispersion 

Group dispersions differ 
Test dispersion; report 
heterogeneity; consider constrained 
permutations; interpret with caution. 

[40] 

Statistical 
PERMANOVA 
significant, but little 2D 
separation 

Separation occurs on 
higher axes; low 
variance on PC1/PC2 

Inspect additional axes; provide 
scree/cumulative variance; consider 
covariates. 

[40] 

Statistical 
High NMDS stress 
(≥0.2) 

Weak signal; 
inappropriate distance; 
sparsity 

Try alternative distances 
(Bray/Jaccard/Aitchison); increase 
dimensionality k; filter low-
prevalence features. 

[41] 
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Statistical NMDS stress ≈ 0 with 
warnings 

Duplicate or near-
identical samples 

Check for duplicates/zero variance; 
remove true duplicates; mitigate 
label overlap. 

[41] 

Statistical Chao1 inflated or NA Many singletons; excess 
zeros 

Compute from raw counts; consider 
coverage-based richness and report 
confidence intervals. 

[42] 

Statistical Chao1 behaves 
erratically 

Using relative 
abundances; many 
singletons 

Compute Chao1 from raw counts 
only; consider coverage-based 
richness if necessary. 

 

Methods 
Bray calculated on raw 
counts 

Library-size 
confounding 

Convert to per-sample proportions 
(relative abundance) prior to Bray–
Curtis. 

[43] 

Method Jaccard misses 
abundance patterns Presence/absence only 

Prefer Bray or Aitchison when 
abundance magnitudes are relevant; 
justify the metric choice. 

[44] 

Method Aitchison fails with 
zeros 

Structural zeros in 
compositions 

Apply a small pseudo-count or 
multiplicative replacement; perform 
sensitivity analysis on pseudo-count. 

[44] 

Method Negative eigenvalues in 
PCoA 

Non-Euclidean 
distances 

Use eigenvalue corrections or 
methods that handle non-Euclidean 
metrics. 

 

Method Rank mismatch in 
composition plots 

Relative table with a 
different taxonomic rank 

Re-aggregate to the chosen rank and 
re-normalize per sample; document 
the final rank used. 

 

Method 
Unexpected drop in 
bacterial reads after 
organelle filtering 

Over-filtering due to 
DB/content mismatch 

Spot-check read classifications; 
adjust thresholds; refine the 
organelle DB; re-run a subset. 

 

QC Large read loss after 
filtering 

Thresholds too strict; 
path mix-ups 

Revisit quality/length cutoffs; verify 
input/output folders; confirm file 
naming and sample lists. 

 

QC Pronounced batch/run 
effects 

Extraction/kit/day 
effects 

Include batch in models; use strata to 
restrict permutations. 

 

QC 
Contaminants drive 
patterns 

Incomplete 
decontamination 

Include negative controls; remove 
known environmental contaminants; 
reprocess if needed. 

[24,37] 

QC Extreme sparsity/zeros Many rare features 
Apply prevalence and total-count 
filters; report the proportion of 
features removed. 

 

QC Sample ID mismatches 
Inconsistent naming 
between metadata and 
matrices 

Harmonize identifiers; log 
dropped/added samples; rerun 
checks before analysis. 

 

Design Unbalanced group sizes Inflated type I error; 
reduced power 

Report sample sizes; use constrained 
permutations or covariates; consider 
stratified resampling. 

[8] 

Design Too few replicates for 
ellipses n < 3 per group Omit ellipses; show centroids or 

convex hulls; note the limitation. 
 

Visualization Overplotted labels Many samples; short 
axes 

Use label repulsion; facet by group; 
increase figure size; limit labels to 
selected points when appropriate. 

 

Computational Long runtimes 
Large matrices; slow 
ordination 

Prefilter low-prevalence taxa; 
parallelize distance computation; 
cache ordination. 

 

Reproducibility The results vary between 
runs 

Random seeds; package 
versions 

Set random seeds for NMDS and 
permutations; record software 
versions in the report. 
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Interpretation Only dispersion tests are 
significant 

Difference in variability, 
not centroids 

Report dispersion results; qualify the 
PERMANOVA interpretation 
accordingly. 

[40] 

Sensitivity Results depend on 
filtering or pseudo-count Threshold sensitivity 

Report sensitivity across 
prevalence/abundance thresholds 
and pseudo-count settings; include a 
comparison table. 

 

 
 

Supplementary information 
 
Supplementary materials are available with the online version of this article and in the associated GitHub repository 
(https://github.com/henrimdias/emu-microbiome-HPC). Supplementary data have been deposited in Zenodo (DOI: 
10.5281/zenodo.17195104).  
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