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Abstract

Accurate profiling of soil and root-associated bacterial communities is essential for understanding ecosystem functions and
improving sustainable agricultural practices. Here, a comprehensive, modular workflow is presented for the analysis of full-
length 16S rRNA gene amplicons generated with Oxford Nanopore long-read sequencing. The protocol integrates four
standardized steps: (i) quality assessment and filtering of raw reads with NanoPlot and NanoFilt, (ii) removal of plant
organelle contamination using a curated Viridiplantae Kraken2 database, (iii) species-level taxonomic assignment with Emu,
and (iv) downstream ecological analyses, including rarefaction, diversity metrics, and functional inference. Leveraging high-
performance computing resources, the workflow enables parallel processing of large datasets, rigorous contamination
control, and reproducible execution across environments. The pipeline’s efficiency is demonstrated on full-length 16S rRNA
gene datasets from yellow pea rhizosphere and root samples, with high post-filter read retention and high-resolution
community profiles. Automated SLURM scripts and detailed documentation are provided in a public GitHub repository
(https://github.com/henrimdias/emu-microbiome-HPC; release v1.0.2, emu-pipeline-revised) and archived on Zenodo (DOI:
10.5281/zenodo.17764933).

Key features

e Implement rigorous quality control (QC) of raw 16S rRNA Nanopore reads and sequencing controls.

e Remove plant organelle contamination with a curated Kraken2 database.

e  Perform high-resolution taxonomic assignment of full-length 16S rRNA reads using Emu.

e Integrate downstream statistical analyses, including rarefaction, PERMANOVA, and DESeq?2 differential abundance.
e  Conduct scalable microbiome diversity and functional analyses with FAPROTAX.

Keywords: Metabarcoding pipeline, Soil-plant-microbiome, 16S rRNA, Full-length amplicon, High-performance
computing, Bioinformatics reproducibility

This protocol is used in: Legume Science (2025), DOI: 10.1002/1eg3.70069
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Overview of the long-read 16S rRNA microbiome workflow on high-performance computing (HPC). The pipeline

comprises four steps and their primary inputs/outputs: (1) QC and filtering of Nanopore reads (NanoPlot, NanoFilt)
producing per-sample QC reports and filtered FASTQ; (2) organelle removal with Kraken2 against a curated Viridiplantae
(plastid and mitochondrial) database, yielding organelle-depleted FASTQ; (3) taxonomic assignment with Emu, generating
four outputs, of which the species-level relative abundance table and the per-taxon read count table are used downstream;
and (4) downstream ecological analyses that compute composition summaries and diversity metrics from these tables. Conda
environments ensure reproducible tool execution on HPC, and log files from each step are retained for statistical summaries.

Background

Microbiomes play a central role in maintaining soil health and supporting plant development, influencing nutrient cycling,
disease resistance, and overall ecosystem stability [1,2]. In both agricultural and natural systems, diverse microbial
communities dominated by bacteria in soils and plant tissues are key drivers of biogeochemical processes such as carbon
sequestration and nitrogen transformation [3]. Understanding the composition and functions of microbial communities
provides a foundation for the development of new technologies, a guide for ecological management decisions, and the
improvement of agricultural practices. However, accurate and consistent microbiome profiling remains a technical challenge,
especially when dealing with complex environmental samples such as soil samples [4].

For bacterial community profiling, amplicon sequencing of the 16S rRNA gene remains a widely used, cost-effective
approach for estimating community composition and diversity across environmental gradients and experimental
manipulations [5]. In soils and plant compartments (rhizosphere, endosphere, and phyllosphere), where communities are
both diverse and uneven, the ability to resolve taxa at finer ranks (e.g., species and, where possible, strain) improves the
interpretability of ecological patterns and the portability of findings across studies [6,7]. Methodological advances have
progressively increased taxonomic resolution and reproducibility in amplicon workflows. Early pipelines grouped reads into
operational taxonomic units (OTUs) at fixed similarity thresholds, which simplified analysis but conflated biological and
technical variation. However, these methods often fall short in delivering species-level resolution and are prone to variability
across pipelines and datasets [8,9].

The shift toward exact sequence-based approaches (e.g., amplicon sequence variants, ASVs) reduced clustering artifacts for
short-read data, improving comparability across experiments [10]. More recently, long-read sequencing has enabled
recovery of near full-length 16S rRNA genes, potentially improving species-level assignment, disambiguating closely
related taxa, and stabilizing ecological inferences in complex communities [11,12]. However, leveraging full-length reads
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requires algorithms that can accommodate read length—specific error structures, model multi-mapping to reference databases,
and estimate abundances without overinflating diversity [13]. Emu, a taxonomic profiling method based on expectation-
maximization (EM) to resolve ambiguous long-read mappings, yields compositional estimates that aim to be both accurate
and robust for long-read 16S rRNA datasets [14].

Despite these advances, environmental microbiome studies still face challenges related to reproducibility and scale [5,15].
Reported community differences can be sensitive to choices in primer sets, reference databases, quality filters, and
classification parameters, complicating meta-analysis and the accumulation of knowledge [8]. Soil and plant microbiomes
also impose heavy computational demands due to complex experimental designs, due to high richness and the need for
deeper sequencing to capture rare taxa, which can strain local computing resources [16]. High-performance computing (HPC)
environments address scalability but are often perceived as inaccessible to new users and can themselves be sources of
variability when software stacks, dependencies, or job-scheduling constraints differ across clusters [17,18]. For long-read
16S rRNA specifically, the lack of shared, domain-tailored, and fully documented workflows that integrate Emu with
transparent quality control and benchmarking makes it difficult to evaluate performance across soil and plant compartments
and to reproduce results across independent laboratories.

Consequently, there is a practical and conceptual gap: we lack a standardized, open, and reproducible long-read 16S rRNA
pipeline that (i) is expressly designed for soil and plant microbiome questions, (ii) operationalizes best practices for quality
control and reference-based inference with Emu, and (iii) scales predictably on HPC while producing portable, versioned
outputs for downstream ecological analysis. Existing tutorials often target short-read OTU/ASV workflows or provide
minimal guidance on how to tune long read—specific steps (e.g., length/quality screening, handling mapping, and database
curation) under realistic environmental complexity [5,8,19]. Moreover, reproducibility guidance typically emphasizes
containerization or environment capture but stops short of demonstrating that end-to-end results remain stable across
different HPC clusters, settings, or modest updates to reference databases, factors that commonly change across institutional
environments [15]. For interdisciplinary audiences, these limitations hinder the translation of microbiome insights into real
practice interventions or ecological theory because conclusions may be contingent on opaque computational choices.

To address this need, a reproducible Emu-based workflow is presented for soil and plant microbiome profiling, designed for
HPC execution while remaining accessible to users with varying computational backgrounds. The workflow is organized
into four steps: long-read 16S rRNA gene input validation, quality control suited to full-length reads, reference-informed
taxonomic assignment with Emu, and standardized outputs for ecological analyses, each accompanied by versioned
configurations and human-readable reports. Reproducibility is supported through declarative configuration files so that
identical inputs produce consistent outputs across different clusters, and scalability is demonstrated.

Software and datasets

The complete set of databases, software tools, and custom scripts required to reproduce this workflow is listed in Table 1,
along with version numbers, access information, and licensing details. All custom scripts are available in the public GitHub
repository and archived on Zenodo (DOI: 10.5281/zenodo.17764933; release v1.0.2).

Table 1. Databases, software, and custom scripts required to run the full Emu-based 16S microbiome workflow

Type Software/dataset/resource Version Date License Access
Database RefSeq (NCBI) Viridiplantac 1.1 May, 2025 Free
(mitochondria)
Database  neied  (NCBD - Viridiplantae ., | May, 2025 Free
(plastid)
Database Emu prebuilt DB (OSF 56uf7) v3.4.5 May, 2023 CC-BY Free
Database FAPROTAX database v1.2.12 May, 2025 CC-BY Free
Software 1 NanoPlot 1.44.1 June, 2023 GPL-3.0 Free
Software 2 NanoStat 1.6.0 June, 2023 GPL-3.0 Free
Software 3 NanoFilt 2.8.0 June, 2023 GPL-3.0 Free
Software 4  Kraken2 v.1.0 July, 2025 MIT Free
Software 5 Emu v3.5.1 January, 2021 MIT Free
Software 6 R (base) v4.4.2 October, 2025 GLP v2 Free
Software 7 Python v3.8.0 October, 2019 BSDopen Free
source
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. 10.5281/zenodo.
Script 1 run_nanoplot_barcode.slurm 17764933; v1.0.2 November, 2025 CC-BY Free

. 10.5281/zenodo.
Script 2 run_nanofilt.slurm 17764933; v1.0.2 November, 2025 CC-BY Free

10.5281/ do.
Script 3 run_QC_summary.py 177649 3?1:3 (()) ) November, 2025 CC-BY Free

download_plant_organelle RefSe  10.5281/zenodo.
q_fastas.sh 17764933; v1.0.2

. . 10.5281/zenodo.
Script 5 kraken2 add build db.slurm 17764933; v1.0.2 November, 2025 CC-BY Free

. . 10.5281/zenodo.
Script 6 kraken2 classify filter.slurm 17764933; v1.0.2 November, 2025 CC-BY Free

remove_kraken2 organelle reads. 10.5281/zenodo.
py 17764933; v1.0.2

10.5281 .
Script 8 summarize kraken2 reports.py 1(7) 756489 3/ fr‘lﬁdg ) November, 2025 CC-BY Free

. 10.5281/zenodo.
Script 9 run_emu.slurm 17764933; v1.0.2 November, 2025 CC-BY Free

. 10.5281/zenodo.
Script 10 collect_counts.py 177649 3?1:3 (()) ) November, 2025 CC-BY Free

10.5281 .
Script 11 relab_to_counts.py 177649 3/ ;‘?I\lﬁdg ) November, 2025 CC-BY Free

. . . 10.5281/zenodo.
Script 12 downstream_microbiome.r 17764933; v1.0.2 November, 2025 CC-BY Free

. 10.5281/ do.
Script 13 emu-to-faprotax.py 177649 3?1‘1;1 (()) ) November, 2025 CC-BY Free

. 10.5281/zenodo.
Script 14 collapse_table.py 1776 493?1:3 (()) ) November, 2025 CC-BY Free

Script 4 November, 2025 CC-BY Free

Script 7 November, 2025 CC-BY Free

Procedure

Part 1. Before you begin

Before initiating the four steps, it is advisable to organize the computational environment, define analysis parameters, and
outline the overall workflow (see GitHub repository: https://github.com/henrimdias/emu-microbiome-HPC). The graphical

overview presents a flowchart of the Emu pipeline, tracing the path from demultiplexed raw Oxford Nanopore FASTQ files
through quality control, organelle filtering, expectation-maximization taxonomic assignment, and downstream ecological
analyses. The following sections detail the principal considerations and options required for smooth and reproducible
execution of the protocol.

Note: This protocol focuses exclusively on the computational analysis of Oxford Nanopore 16S reads and begins at the stage
of base-called, demultiplexed FASTQ files. Procedures for base calling and demultiplexing (e.g., using Dorado,
https://github.com/nanoporetech/dorado), as well as wet-lab steps for DNA extraction, library preparation, and sequencing,

are outside the scope of this protocol.
A. Set up a directory structure

1. Create the project in a high-performance working space (often named scratch or work) for large, input/output-heavy runs,
and keep code, configs, and finalized outputs in persistent project storage (often named project, groups, or shared). The
layout may be created manually or, preferably, cloned from the GitHub template with paths adjusted as needed.

git clone --depth 1 --filter=blob:none --sparse https://github.com/henrimdias/emu-
microbiome-HPC.git
cd emu-microbiome-HPC

Cite as: Dias, H. M. et al. (2026). Reproducible Emu-Based Workflow for High-Fidelity Soil and Plant Microbiome 4
Profiling on HPC Clusters. Bio-protocol 16(2): ¢5577. DOI: 10.21769/BioProtoc.5577


https://github.com/henrimdias/emu-microbiome-HPC
https://github.com/nanoporetech/dorado

bI'O—pI‘OtOCOI Published: Jan 20, 2026

git sparse-checkout set emu pipeline
Note: Retention and backup policies for the working space vary by cluster; check the cluster site docs.

B. Create and manage Conda environments

1. Maintain separate environments (nanotools_env, preemu_env, emu_env, faprotax_env) to avoid software conflicts.
2. Create each environment from YAML files provided in the repository (on the HPC login node).

nanotools_env:

cd yml files

conda env create -f nanotools env.yml

conda activate nanotools_env

preemu_env:

cd yml files

conda env create -f preemu env.yml
conda activate preemu_env

emu_env:

cd yml files

conda env create -f emu env.yml
conda activate emu env

faprotax_env:

cd yml files

conda env create -f faprotax env.yml
conda activate faprotax env

Note: YAML files ensure convenience and reproducibility. Alternatively, each protocol step also includes a one-liner for
installing only the required tools without using YAMLs. Both approaches are valid.

Note: If Miniconda is not available on the cluster, install a local copy in your home directory and use it in all subsequent
SLURM jobs. For example, on the login node:

cd $HOME

wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86 64.sh
bash Miniconda3-latest-Linux-x86 64.sh -b -p $HOME/miniconda3

source S$HOME/miniconda3/etc/profile.d/conda.sh

conda init bash # optional

After installation, make sure all SLURM scripts load this installation, e.g.:
source S$HOME/miniconda3/etc/profile.d/conda.sh

conda activate <env_name>

C. Configure SLURM array jobs
Configure these settings in all SLURM files for each module, as illustrated in step A3 from Part II.

1. Use array indexing (e.g., --array=1-N) to parallelize per-sample steps.

2. Adjust memory (e.g., --mem=4G-24G) and CPU cores (e.g., --cpus-per-task=1-8) according to the demands of each tool
(see Part I, section E).

3. Choose the recommended partition following the cluster policies (e.g., --partition=compute).

4. Change the directories following the recommended paths.

5. If Miniconda is not available, install it (e.g., in SHOME/miniconda3) and use this path as the source directory in all
SLURM job scripts.
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D. Reference databases

1. Select a reference database and fix its version to ensure stable and reproducible taxonomic assignments.

2. Record the database name, version, download date, source/DOI, and checksum.

3. By default, run the protocol with the Emu prebuilt database (OSF project S6uf7).

4. When customization is necessary, rebuild an Emu database from a pinned NCBI taxonomy following the Emu
documentation: https://github.com/treangenlab/emu.

Note: A summary of widely used 16S rRNA gene reference databases, their most recent releases, and Emu-specific
considerations to guide selection and version pinning is available in Table 2.

Caution: As new releases add sequences or rename taxa, identical reads may be classified differently. Version pinning

avoids inconsistencies across runs.

Table 2. Common 16S rRNA gene reference options for Emu workflows

Latest release (version

Database Scope/source Notes for Emu Reference
and date)
F it
Emu  prebuilt Curated 16S bundle for Emu ‘C‘)e?nul Z:}ault targz" last  Ready-to-use [14]
(OSF S6uf7) (NCBI/RefSeq) modified Mar 13, 2023
B RNA /L tom E il ired;
SILVA SSU roa(.i r (SSU/LSU) 138.2, Jul 11, 2024 Custom Emu build required, [20]
curation SILVA v138.1 ready-to-use
-inf fi
Greengenes2 Genome-informed  reference 2024.09, Oct 8, 2024 Custom Emu build required [21]
tree and taxonomy
Classical 16S . Custom Emu build required;
RDP T 1 1202 T[22
taxonomy/training data rainset 19, Jul 2023 RDPv11.5 ready-to-use [22]
G -based t ith . .
GTDB (R226) enome-basec axonomy With - p226, Apr 16, 2025 Custom Emu build required  [23]

16S representatives

E. Hardware pr

eparation

The amount of RAM required depends on the dataset size and the complexity of the analysis. For the workflow described,

which involves moderately complex steps, 16 GB of RAM is sufficient (Table 3).

Table 3. Recommended hardware and scheduler settings for each module of the workflow

Typical use case (as Recommended Typical walltime
Module/step ) CPUs and RAM Example SLURM directives
validated here) (for ~18 samples)
(per task)
#SBATCH --
. Full-length 16S Nanopore partition=moderate*
ggn?);iril;:gf of reads; 6 demultiplexed ?{AI\C/IPUS’ 16 GB #SBATCH --cpus-per-task=4  ~20—40 min
FASTQ files #SBATCH --mem=16G
#SBATCH --time=02:00:00
#SBATCH --
Build Viridiplantae partition=moderate*
Organelle database  chloroplast + 16 CPUs, 32-64 GB #SBATCH --cpus-per- ~60-120 min
build (Kraken2) mitochondria ~ Kraken2 RAM task=16 #SBATCH --
database mem=32G #SBATCH --
time=04:00:00
#SBATCH --
Organelle Classify and remove partition=moderate™
clagssiﬁcation and organel};e reads from 6 8 CPUs, 16 GB #SBATCH--array=I-18 ~30-60 min total
RAM per array task ~ #SBATCH --cpus-per-task=8

read filtering

FASTQ files

#SBATCH --mem=16G
#SBATCH --time=02:00:00
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|
#SBATCH --
. . partition=moderate*
T E fil f
axonomie - bmu Prouing - 0L ¢ cpyg 16 GB  #SBATCH --array=1-18 .
assignment with organelle-depleted full- ~30-60 min total
Emu leneth 168 reads RAM per array task ~ #SBATCH --cpus-per-task=8
g #SBATCH --mem=16G

#SBATCH --time=04:00:00
#SBATCH --

Downstream

Alpha/beta diversity, partition=moderate*

community  and 4 CPUs, 16 GB

. ordination, DESeq2, #SBATCH --cpus-per-task=4 ~ ~30-90 min
2‘;‘;“8‘:?1 FAPROTAX RAM #SBATCH --mem=16G
Y #SBATCH --time=02:00:00
Note: Partition names (e.g., ——partition=moderate) are cluster-specific and may differ across HPC systems. The

settings shown here correspond to the compute infrastructure of the SDSU HPC and should be adapted to the partitions and
resource limits available on other clusters.
For reference, check https://help.sdstate.edu/TDClient/2744/Portal/KB/ArticleDet?ID=159685.

F. Controls

Controls must span the entire workflow, not only the experimental design. Include extraction blanks and no-template PCR
controls and process them through filtering, organelle depletion, taxonomic assignment, and downstream analyses; use at
least one positive control (mock community) to benchmark length/quality thresholds and expected taxonomic recovery. Use
blanks to identify contaminant taxa (e.g., blank-prevalent features) and to set acceptance ranges; report control outcomes
with the main results and retain raw control tables for auditing. These practices are essential for low-biomass contexts and
to avoid reagent/kit contaminants driving patterns (for a review, see [24]).

Part II. Preprocessing full-length 16S rRNA reads

This workflow performs automated quality control and filtering of full-length 16S rRNA Nanopore reads using a single
SLURM pipeline that integrates NanoPlot, NanoFilt, and QC summary consolidation. The unified design minimizes manual
editing by requiring only one configuration update at the top of the SLURM file before execution.

Timing: ~30 min (based on 18 .fastq files ranging between 150 and 220 MB).
Minimum disk space: ~8 GB.

A. Launch the unified nanotools pipeline

1. Ensure that all base-called, demultiplexed FASTQ files are placed in the raw-reads directory (e.g.,
emu_pipeline/raw_data) and follow a consistent naming pattern, such as barcodeXX. fastqg. gz (for example,
barcodeOl.fastg.gz, barcode02.fastqg.gz) or user-defined sampleID. fastqg.gz names that match the
sample identifiers in the metadata table. The SLURM array scripts parse these filenames to derive sample IDs and map them
to metadata.

2. Activate the Conda environment.

conda activate nanotools env

3. Open the SLURM file run_nanotools_pipeline.slurm and edit only the configuration section at the top of the file. Specify
desired directories for raw reads, filtered reads, QC reports, and summary outputs:

# Example configuration block

RAW DIR="/scratch/project/raw"

FILTERED DIR="/scratch/project/filtered"
QC DIR="/scratch/project/qc"

SUMMARY DIR="/scratch/project/summary"
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SCRIPT QC SUMMARY="/home/user/scripts/run QC summary.py"

# Filtering parameters
MIN LEN=1000
MAX LEN=1850
MIN QUAL=10

Note: The script automatically detects files with extensions .fastq or .fastq.gz. There is no need to modify the file search
pattern manually.

4. Submit the SLURM job to run the entire workflow.

sbatch run nanotools pipeline.slurm

Note: This single command executes the following steps sequentially:

(i) NanoPlot: generates per-sample quality control (QC) reports for raw reads.
(ii) NanoFilt: filter reads by quality and length thresholds.

(iii) NanoPlot (filtered): regenerates QC reports afier filtering.

(iv) QC summary: consolidates NanoStat metrics across samples and stages.

B. Filtering logic and parameters

Reads are filtered to 1,000-1,850 bp (Q > 10) to enrich for full-length 16S rRNA gene amplicons (~1,450-1,600 bp) and
exclude truncated (<1,000 bp) and concatemeric or anomalously long (>1,850 bp) reads, improving classification accuracy
and comparability [25].

Expected outputs:

(i) Filtered FASTQ files (*_filtered.fastq.gz)

(i1) NanoPlot QC directories (/nanoplot_reports/raw and /nanoplot_reports/filtered)
(iii) Intermediate NanoStat summaries

C. Consolidating and visualizing QC reports

After the pipeline completes, the QC summary script automatically collects all NanoStat reports (raw and filtered) and
merges them into an integrated summary.

If needed, the script can be run independently:
python run QC summary.py —-inpunt /put the directory -output /put the directory
Expected outputs:

(i) sequencing_summary.csv: Tables of all key NanoStat metrics (mean read length, quality, read count, N50, etc.).
(i) QC_summary_plots.pdf: Multi-page PDF showing side-by-side comparisons (raw vs. filtered) per sample.

D. Quality verification and acceptance criteria

1. Confirm that read-length N50 values fall within the expected amplicon range (1,450-1,550 bp).
2. Ensure that read retention after filtering is between 60% and 90%.
3. Examine QC plots to confirm that the filtering step reduces truncated reads without excessive loss of valid reads.

Note: If results deviate (e.g., severe loss or unexpected quality shifts), adjust the parameters (MIN_LEN, MAX LEN, or
MIN QUAL) in the configuration section of run_nanotools pipeline.slurm and resubmit the job. See Table 2 for
troubleshooting guidance if acceptance criteria are not met.
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Caution: After filtering, the QC reports should show a controlled reduction in total read count and a reshaped quality/length
distribution that reflects the chosen thresholds. If results deviate (e.g., abrupt read loss), adjust the parameters in
run_nanofilt_barcodes.slurm.

Part I11. Organelle contamination removal

Detect and remove organelle (chloroplast and mitochondrial) contamination from full-length Nanopore 16S rRNA reads.
This step preserves accurate bacterial and archaeal community profiles for downstream Emu-based taxonomic analysis by
eliminating host-derived organelle sequences. Reads are classified with Kraken2 [26] against a curated organelle reference
database [27], and organelle-assigned reads are discarded. The result is a high-confidence, organelle-free read set for Emu,

improving accuracy and reproducibility in plant and soil microbiome studies.

Timing: ~30-60 min (based on 18 .fastq files ranging between 150 and 220 MB).
Minimum disk space: ~12 GB.

A. Download curated RefSeq organelle genomes

1. Download curated chloroplast and mitochondrial FASTA files to construct the Kraken2 database. Run the organelle
genome download script. Update and check pathways on the script before running the code.

bash download plant organelle RefSeq fastas.sh
2. Verify downloaded and decompressed files.

ls -1lh /SUSER/scratch/emu pipeline/kraken db/

Note: These files are multi-genome FASTAs curated by NCBI containing a wide range of plastid and mitochondrial
sequences from green plants (May 2025 release).

B. Build the organelle database with Kraken2
1. Activate the Conda environment.

conda activate preemu_env

2. Download taxonomy files.

kraken2-build --download-taxonomy —-db
\/$USER/scratch/kraken env/db/kraken organelle db

3. Build the database with curated references using SLURM. Construct a Kraken2 organelle database from the curated
RefSeq chloroplast and mitochondrial FASTA files downloaded in the previous step.

sbatch kraken2 add build db.slurm

Expected database files: hash.k2d; opts.k2d; taxo.k2d; seqid2taxid.map.

C. Identify and filter organelle contamination

1. Use this database to classify reads and remove organelle-derived sequences from environmental full-length 16S rRNA
gene datasets. The provided script applies Kraken2 using the default nucleotide parameters (k-mer length k£ = 35, minimizer

length € = 31, minimizer spaces s = 7), with a conservative confidence threshold of --confidence 0.6 [28]. Run the provided
SLURM script:
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sbatch kraken2 classify filter.slurm

2. Summarize contamination levels.
python summarize kraken2 reports.py \
--input dir /path/to/reports/ \

--output file /path/to/output/kraken contamination summary.tsv

Expected outputs: Per-sample classification outputs: *.kraken, *.report.txt; Organelle-depleted reads: *.fastq.gz;
kraken contamination _summary.tsv.

3. After depletion, confirm that bacterial reads dominate root libraries [29]. Check that organelle contamination does not
exceed 15%—-20% of classified reads.

4. Verify that the reads loss after filtering does not exceed 30%. Check code description in:

remove kraken2 organelle reads.py.

5. Confirm that database provenance checks complete without errors, checking that report files are not empty or abnormal.
Note: Empty or abnormal report.ixt files, unusually high organelle reads, or sharp bacterial losses (>30%) indicate
potential database mismatch, over-filtering, or contamination. See Table 6 (Troubleshooting) for likely causes and
corrective actions.

Part IV. Taxonomic assignment using Emu

Timing: ~30-60 min (based on 18 .fastq files ranging between 150 and 220 MB).
Minimum disk space: ~2 GB.

A. Prepare the Emu database

1. Download the prebuilt Emu database from OSF (https://osf.io/56uf7/) and set the directory path.

Note: The prebuilt Emu database requires approximately 90 MB of disk space.

2. Alternatively, build a custom database following the Emu GitHub instructions (https://github.com/treangenlab/emu; see
Table 1) [30].

B. Run Emu with SLURM batch arrays

1. Inside the run_emu. s1lurm script, each array task calls Emu using a template command such as:

echo "Running EMU on: $FASTA FILE"
emu abundance \
--db "SEMU DB DIR" \
—--output-dir "$BARCODE OUTPUT" \
-—-keep-counts \
--keep-read-assignments \
"SFASTA FILE"
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Note: Here, EMU DB _DIR points to the prebuilt Emu database (see Part IV, section A), FASTA_FILE is the organelle-
depleted full-length 16S rRNA gene file for a given barcode, and BARCODE OUTPUT is a per-sample directory where
Emu writes relative abundance tables (* rel-abundance.tsv) and read assignment distributions (* read-assignment-
distributions.tsv). It does not apply an additional minimum read-length filter inside Emu because length filtering to 1,000—
1,850 bp (Q > 10) is already enforced upstream with NanoFilt.

2. Activate the Conda environment.

conda activate emu_env

3. Before running the job, confirm that the input directory contains organelle-depleted FASTQ files from the previous step,
the Emu database is downloaded and indexed, and all directory paths in the SLURM script match the HPC environment.

4. Submit the SLURM job script:

sbatch run emu.slurm

5. Monitor the job array to confirm that each sample (barcode) runs as an independent task.
6. Typically, >95% of mapped reads should be assigned to a bacteria taxon.

Expected outputs: * rel-abundance.tsv (taxa-level relative abundances); * read-assignment-distributions.tsv (read-level
mapping details).

C. Combine per-sample taxonomic tables

1. Merge all per-sample outputs into a single wide-format abundance table using the combine-outputs command:

emu combine-outputs <directory path> <rank>

Expected outputs: Combined abundance table (e.g., species_rel-abundance.tsv)

Note: This function generates a single table that contains the relative abundances of all Emu output files within a specified
directory. It automatically selects all .tsv files in the directory that contain “rel-abundance” in their filename. It is also

possible to combine tables at a specific taxonomic rank by specifying one of the following: tax_id, species, genus, family,
order, class, phylum, or superkingdom. For more details, visit the GitHub repository: https.//github.com/treangenlab/emu.

Caution: Regarding Emu, the quality of taxonomic assignment is evaluated based on the proportion of classified reads and
the performance of controls. For example, in complex soils, low read assignment may indicate high error rates or gaps in
the database rather than true biological absence [31]. If Emu fails to complete, expected output tables are missing, assignment
rates are unexpectedly low at the genus or species level, array indexing skips or mislabels samples, or database
paths/provenance are incorrect, consult the troubleshooting guidance for likely causes and corrective actions (see Table 6).

D. Aggregate Emu read-count statistics

1. After Emu completes, collect .out files generated per barcode (e.g., barcodeOl.out) that report three fields:
Unmapped Read Count, Mapped Read Count, and Unclassified Mapped Read Count. Place all .out files in a single
directory.

2. Aggregate these counts across barcodes into one table using the provided script:

python collect counts.py /path/to/directory

3. Convert relative abundances into estimated raw read counts per barcode using the following script:

python relab to counts.py summary counts.tsv relative abundance.tsv raw_counts.tsv
--strict-sum
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Note: Diversity indices that require integer counts (e.g., Chaol, rarefaction, DESeq2) must use these derived counts, not
proportions.

Part V. Microbiome downstream analyses

Timing: ~60—120 min (based on 18 samples).
Minimum disk space: ~4 GB.

In the final stage of the workflow, downstream microbial community analysis is carried out in R, drawing on established
ecological tools such as the vegan package [32]. Abundance tables and metadata provide the foundation for exploring
sequencing depth, diversity, and community structure. Analyses typically include rarefaction curves, alpha diversity indices
(e.g., Shannon, Simpson, Pielou’s evenness, Chaol), and beta diversity ordinations such as PCoA on Bray—Curtis
dissimilarities. Differential abundance analysis can be performed with DESeq? [33] using its internal size-factor
normalization and false discovery rate (FDR)-adjusted P-values to identify taxa that change significantly across experimental
groups. These are complemented by visualizations of taxonomic composition across selected ranks, while functional insights
can be inferred with FAPROTAX [34]. Together, these approaches offer a flexible framework that can be readily adapted
to a wide range of experimental designs. Table 4 summarizes the R version and core packages, together with their version
numbers and roles in the workflow.

Table 4. R environment and packages used for microbiome downstream analyses

Package  Version Role in downstream workflow

data.table 1.15.4 Fast import/export of metadata, count tables, distance matrices, and diagnostic CSV files.
Data wrangling for metadata and abundance tables, grouping and summarizing for plots and
dplyr 1.1.4 .
statistics.
tidyr 1.3.1 Reshaping tables for taxonomic composition plots and diversity summaries.
forcats 1.0.1 Factor management (ordering and relabeling groups and taxa for consistent plotting).
agplot? 1154 C.OI‘C Plot.ting engine for rarefaction curves, composition barplots, alpha and beta diversity
visualizations.

ggrepel 0.9.5 Non-overlapping sample labels in PCoA and NMDS plots.

Statistical annotations on alpha diversity boxplots (global tests, pairwise comparisons,
significance labels).

Ecological analyses: rarefaction (rarefy), diversity indices, distance matrices (Bray, Jaccard),

ggpubr 0.6.0

2.7.1 e .
vegat ordinations (NMDS), PERMANOVA, and betadisper.
. Assumption testing (Shapiro, Levene), ANOVA/Kruskal-Wallis, and post-hoc tests
rstatix 0.7.2 . .
(Tukey/Dunn) for alpha diversity.
broom 1.0.5 Tidy summaries of model outputs (e.g., ANOVA tables) for export to CSV.
stringr 1.5.1 String manipulation and cleaning of labels where needed.

svglite 2.1.3 High-quality SVG export for all figures (used by save plot multi).

ape 5.8 PCoA with Cailliez correction as a robust fallback when cmdscale fails; phylogenetic utilities.

Note: The downstream R script expects two main input tables:

(i) Metadata table (metadata.tsv): tab-delimited, with one row per sample and at least the following columns:

» SamplelD (unique sample identifier;, must match column names in the count table).

* Group (experimental group or treatment).

(ii) Count table (counts.tsv): tab-delimited matrix with the following:

* One row per taxon (e.g., species or genus).

* One column per sample (SamplelD).

* An initial column with Taxon (or Species) storing the taxonomic label.

(iii) Relative abundance table (relative counts.tsv): same structure as the count table, but with remaining cells containing
relative abundances (e.g., output from Emu pipeline) instead of raw counts.

An example dataset (example _metadata.tsv, example counts.tsv) that satisfies these requirements is provided in the GitHub
repository (under emu_pipeline/example_data/) and in the Zenodo archive. Users can run the full downstream script on this
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example dataset to verify that their installation and configuration are working before analyzing their own data.
A. Run the downstream analysis workflow in R

1. Download downstream_microbiome.R from the repository.
2. Open and edit the configuration block at the top of the script: set metadata_path, raw_counts_path, rel _abund_path, and
EXPORT_DIR. Confirm sample_id_col, group_col, and tax_level match the metadata table.

# == ———e
# 1) User configuration (edit for a given dataset)

# == —

# Path to metadata table (one row per sample)
metadata_path <- "metadata.tsv"

# Path to raw count table (features in rows, samples in columns)
raw_counts path <- "raw counts.tsv"

# Path to relative abundance table
rel abund path <- "raw counts.tsv"

# Column name in metadata containing sample IDs
sample id col <- "SampleID"

# Column name used as the main grouping factor (for colors / statistics)
group col <- "Group"

# Target taxonomic rank for composition plots (case-insensitive).

# Typical choices: "kingdom", "phylum", "class", "order", "family", "genus",
"species".
tax level <- "genus"

# Number of most abundant taxa to display explicitly in composition plots
topN taxa <- 16

# Number of interpolation steps for rarefaction curves
raref steps <- 100

# Output directory for all plots and tables
EXPORT DIR <- "downstream microbiome output"
dir.create (EXPORT DIR, showWarnings = FALSE, recursive = TRUE)

# Optional: preprocessing for alpha diversity (filters / rarefaction on raw counts)
filter for alpha <- FALSE # 1f TRUE, apply filters below (must be used for Chaosl)

min lib alpha <- 1000 # minimum reads per sample for alpha analyses

min prevalence <- 2 # minimum number of samples in which a feature must be
present

min total count <- 10 # minimum total counts per feature (across all samples)

rarefy for alpha <- FALSE # if TRUE, perform rarefaction for alpha analyses
rare depth alpha <- NA # if NA, uses minimum library size after filtering

# Optional: minimum library size for inclusion in beta diversity
min lib beta <-1 # 1 removes only zero-library samples

3. Run the script locally in RStudio or from the command line:

Cite as: Dias, H. M. et al. (2026). Reproducible Emu-Based Workflow for High-Fidelity Soil and Plant Microbiome 13
Profiling on HPC Clusters. Bio-protocol 16(2): ¢5577. DOI: 10.21769/BioProtoc.5577



bI'O—pI‘OtOCOI Published: Jan 20, 2026

Rscript downstream microbiome.R

Expected outputs: PNG/SVG figures (rarefaction, composition bar charts, alpha diversity, PCoA/NMDS) and CSV tables
(alpha metrics, PERMANOV A/betadisper results, DESeq2 outputs).

Note: The script is fully commented to support customization and guides users through a complete downstream workflow,
including rarefaction curves for sequencing depth assessment, taxonomic composition plots at chosen ranks, alpha diversity
metrics (S_obs, Chaol, Shannon, Simpson, Pielou’s evenness), beta diversity ordinations (Bray, Jaccard, Aitchison with
PCoA/NMDS), PERMANOVA and dispersion testing (betadisper), and differential abundance analysis with DESeq2 using
size-factor normalization and FDR-adjusted results.

B. Assign putative functions with FAPROTAX

1.  Download the FAPROTAX  database (v1.2.12, last updated May 2025; [34]) from:
http://www.loucalab.com/archive/FAPROTAX/lib/php/index.php?section=Download

2. Activate the Conda environment.

conda activate faprotax env

3. Prepare the input table with taxonomy, sample IDs, and counts/abundances. Convert Emu outputs using:

python emu-to-faprotax.py relative abundance.tsv faprotax relative abundance.tsv
4. Run FAPROTAX in tabular mode to generate function-by-sample profiles:

python collapse table.py \

-1 faprotax relative abundance.tsv \

-o func faprotax relative abundance.tsv \

-g FAPROTAX.txt -d "taxonomy" -c "#" -v

Expected outputs: func_faprotax relative _abundance.tsv (function-by-sample matrix).

Note: FAPROTAX accuracy depends on the quality of taxonomic assignments. Misclassifications at the genus/species level
may propagate into functional predictions.

Validation of protocol

This protocol has been used and validated in Dias et al. [35]. The study applied the workflow to full-length 16S rRNA
Nanopore datasets from seasonal yellow pea varieties, demonstrating organelle read removal, Emu-based taxonomic
assignment, and downstream ecological analyses. Detailed results are presented in Figure 2 (alpha diversity metrics) and
Figure 4 (community composition profiles) of [35].

General notes and troubleshooting

Before inspecting module-specific issues, it is recommended that users perform a few high-level checks on read retention,
organelle removal, taxonomic assignment rates, and diversity-ready sampling depth. Table 5 summarizes indicative sanity-
check thresholds based on the validation dataset.
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Table 5. Quick sanity-check thresholds across the workflow

Workflow step Metric

threshold
(validation dataset)

Indicative

How to check

>70%—-80% of reads retained

Compare total reads before and after NanoFilt

QC and NanoFilt Post-NanoFilt read . using NanoStat summaries or per-sample
) . after quality and length .. o
filtering retention filterin FASTQ statistics. Large losses may indicate

g overly stringent filters or poor runs.
Initial organelle fraction often  Use kraken2 reports or
Organelle Organelle .
.. ~5%—-40%; after Kraken2 summarize kraken2 reports.py to compute the
removal contamination . . . » .
filtering, residual organelle proportion of organelle-assigned reads pre- and
(Kraken?2) (before/after) .
reads should be <1% post-filtering.
. >70% of reads mapped to the Inspect Emu summary outputs for per-sample
Taxonomic . . . N . . .
assignment Classification/mapping Emu database and >60% mapping and classification rates; low values
(Emu) rates assigned at least to the genus  may indicate database gaps or poor read quality

level for high-quality runs

rather than true absence.

Input depth for Minimum counts per

Samples with <5,000-10,000
16S rRNA reads after filtering
and strongly non-saturating

Use the downstream R script to (i) inspect per-
sample read counts and (ii) inspect rarefaction
curves: samples whose curves do not approach

diversity sample + rarefaction rarefaction .curves should be a platcau at the chosen depth likely have

treated cautiously or excluded . .

insufficient coverage.

from alpha/beta analyses

Significant het ity of . . . .
Beta  diversit dilsgn;rls?zﬁ (bzg((i)iiez?y 0< Examine vegan::betadisper and its permutation

Vi . . .
and y Dlsi)er:on vs. group OI;) implies PERl\jl) ANgV A 'Ze;t .(pze)rmutest) 'Illorcllgmde . PERMAN(?VA
ntroi adonis2); unequal dispersion can driv

PERMANOVA Contrones results must be interpreted OmISZ), - uneqt spetsion ¢ ¢

with caution

apparent group separation.

Common problems, their likely causes, and practical solutions are summarized in Table 6. This table covers issues that arise

across the pipeline, including key references.

Table 6. Common pitfalls in microbiome analysis: quick diagnostics and solutions

K
Nature Problem Possible cause Solution &y
references
. . I ing depth 1
Insufficient sequencing ncrease sequencing depth or poo
. . . . runs or use coverage-based
Experimental No plateau in rarefaction  depth; highly uneven . . [36]
I comparisons; reserve rarefaction for
communities
QC.
o Rarefaction curves with Re.sidual . Appl?f contaminant/chimera
Statistical . i1 chimeras/contaminants;  filtering; evaluate batch effects; [37]
irregular “kinks . cpe
batch effects remove outlier samples if justified.
. - U high
Comparing groups at The minimum read se @ fugher corr.m'lon coverage
.. .. rather than the minimum; report
Statistical minimum depth drops threshold excludes many . [38]
many samples libraries sensitivity analyses (e.g., 50k vs.
y 100k reads).
Rarefaction used as Use size-factor or compositional
Statistical normalization for Methodological misuse ~ methods (e.g., DESeq2); limit [39]
differential abundance rarefaction to alpha/QC.
PERMANOVA Test dispersion; report
Statistical significant with unequal ~ Group dispersions differ  heterogeneity; consider constrained [40]
dispersion permutations; interpret with caution.
PERMANOVA Separation occurs on Inspect additional axes; provide
Statistical significant, but little 2D  higher axes; low scree/cumulative variance; consider [40]
separation variance on PC1/PC2 covariates.
. Try alternative distances
. Weak 1; o .
Statistical High NMDS stress . 4 e di s:gna (Bray/Jaccard/Aitchison); increase [41]
atistica inappropriate distance; .. L
(>0.2) PProp dimensionality k; filter low-

sparsity

prevalence features.
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|
. . Check for duplicates/zero variance;
. NMDS stress =~ 0 with Duplicate or  near- P . ..
Statistical . . . remove true duplicates; mitigate [41]
warnings identical samples
label overlap.
Many sineletons: excess Compute from raw counts; consider
Statistical Chaol inflated or NA erosy g ’ coverage-based richness and report [42]
Z .
confidence intervals.
Usin, relative  Compute Chaol from raw counts
.. Chaol behaves g P .
Statistical erraticall abundances; many only; consider coverage-based
Y singletons richness if necessary.
. . Convert to per-sample proportions
Bray calculated on raw Library-size . .
Methods Y Y . (relative abundance) prior to Bray— [43]
counts confounding )
Curtis.
. Prefer Bray or Aitchison when
Jaccard misses .
Method Presence/absence only abundance magnitudes are relevant; [44]
abundance patterns .. . .
justify the metric choice.
o . . . Apply a small pseudo-count or
Aitchison fails with Structural zeros in PP .y L. P
Method .. multiplicative replacement; perform  [44]
Zeros compositions e .
sensitivity analysis on pseudo-count.
Use eigenvalue corrections or
Negative eigenvalues in  Non-Euclidean .
Method 8 8 . methods that handle non-Euclidean
PCoA distances .
metrics.
. . . . Re-aggregate to the chosen rank and
Rank mismatch in Relative table with a 58 g
Method - . . re-normalize per sample; document
composition plots different taxonomic rank
the final rank used.
Unexpected drop in . Spot-check read classifications;
p. P Over-filtering due to p.
Method bacterial reads after . adjust  thresholds; refine the
. DB/content mismatch
organelle filtering organelle DB; re-run a subset.
. Revisit quality/length cutoffs; verif
Large read loss after Thresholds too strict; . quatity/iens Y
QC . . input/output folders; confirm file
filtering path mix-ups . .
naming and sample lists.
Qc Pronounced batch/run  Extraction/kit/day Include batch in models; use strata to
effects effects restrict permutations.
. . Include negative controls; remove
Contaminants drive Incomplete . .
QC .. known environmental contaminants; [24,37]
patterns decontamination .
reprocess if needed.
Apply prevalence and total-count
QC Extreme sparsity/zeros Many rare features filters; report the proportion of
features removed.
Inconsistent naming Harmonize identifiers; log
QC Sample ID mismatches  between metadata and dropped/added  samples; rerun
matrices checks before analysis.
Report sample sizes; use constrained
. . Inflated type 1 error; P . P . .
Design Unbalanced group sizes permutations or covariates; consider  [8]
reduced power . .
stratified resampling.
. Too few replicates for Omit ellipses; show centroids or
Design . n < 3 per group e
ellipses convex hulls; note the limitation.
Use label repulsion; facet by group;
C . Many samples; short . P . . Y group
Visualization Overplotted labels axes increase figure size; limit labels to
selected points when appropriate.
. Prefilter ~ low-prevalence  taxa;
) . Large matrices; slow . . .
Computational Long runtimes o parallelize distance computation;
ordination ..
cache ordination.
Set random seeds for NMDS and
o The results vary between Random seeds; package .
Reproducibility permutations;  record  software

runs

versions

versions in the report.
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|
. . . . L Report dispersion results; qualify the
. Only d test: Diffi bility, . .
Interpretation .n}./ 1SPEISION fests are ' erence. in variabiiity PERMANOVA interpretation  [40]
significant not centroids .
accordingly.

Report sensitivity across

Result: d d lence/abund threshold

Sensitivity esults epen on o eshold sensitivity prevalence/abundance resholds

and pseudo-count settings; include a
comparison table.

filtering or pseudo-count

Supplementary information

Supplementary materials are available with the online version of this article and in the associated GitHub repository
(https://github.com/henrimdias/emu-microbiome-HPC). Supplementary data have been deposited in Zenodo (DOI:

10.5281/zenodo.17195104).
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