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Abstract

Genome walking is a classical molecular biology technique used to amplify unknown regions flanking known DNA
sequences. Genome walking holds a vital position in the areas associated with molecular biology. However, existing
genome-walking protocols still face issues in experimental operation or methodological specificity. Here, we propose a
novel genome-walking protocol based on bridging PCR. The critical factor of this protocol is the use of a bridging primer,
which is made by attaching an oligomer (or tail primer sequence) to the 5’ end of the walker primer 5’ region. When the
bridging primer anneals to the walker primer site, this site will elongate along the tail of the bridging primer. The non-target
product (the main contributor to background in genome walking), defined by the walker primer, is lengthened at both ends.
In the next PCR(s), the annealing between the two lengthened ends is easier than the annealing between them and the shorter
tail primer. As a result, this non-target product is eliminated without affecting target amplification.

Key features

e  This bridging PCR protocol, built upon the technique developed by Lin et al. [1], is universal.

e The bridging primer is made by attaching a tail DNA to the 5’ end of the walker primer 5’ region.

e Lengthening of non-target DNA by both ends of bridging primer results in intrastrand annealing or hairpin formation,
the basis for the removal of non-target background.
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Background

Genome walking (GW) is a molecular tool for cloning unknown regions flanking known DNAs, facilitating methods such
as gene cloning, identifying DNA mutations, and analyzing transgenic sites [2-5]. Up to date, three types of GW were
available: random PCRs, genome library-based techniques, and restriction-ligation-based PCRs. Among them, genome
library-based techniques are time-consuming and inefficient, due to requiring the construction and screening of a genomic
DNA library, and restriction-ligation-based PCRs require the digestion of genomic DNA and the subsequent ligation of the
digested product prior to amplification. Comparatively, random PCRs are faster and more efficient, as the extra steps prior
to amplification are omitted [6-10].

Random PCRs generally require two to three rounds of nested amplification. In primary amplification, a low-temperature
annealing cycle allows the walking primer (WP) to randomly anneal to the unknown flank, thereby synthesizing a target
DNA comprising a known region and its unknown flank. The following round or two of nested amplification further enrich
this DNA, ultimately achieving the so-called genome walking [11-15]. However, due to the use of WP and at least one low-
temperature cycle in each round of amplification, three types of non-target amplicons will be produced. Type I is synthesized
by GSP alone; type Il is synthesized by GSP and WP; and type Il is synthesized by WP alone. Types | and Il can be easily
removed in the next PCR because they lack an authentic binding site for the sequence-specific primer (SSP). The real
challenge is how to eliminate the type 111 non-target product [16-19]. Existing random PCRs, such as thermal asymmetric
interlaced PCR [20], fusion primer and nested integrated PCR [21], and partially overlapping primer-based PCR [22,23],
have their reliability compromised due to the accumulation of this non-target product. Therefore, a truly reliable genome-
walking scheme should be able to fundamentally overcome this non-target amplification, which has always been pursued
by researchers [24-27].

In this study, a bridging PCR-based genome-walking protocol was designed. The main innovation of this PCR is the use of
a bridging primer (BP) in secondary PCR, which is made by attaching an oligomer (or tail primer, TP) to the 5’ end of the
WP 5' region. As a result, in secondary PCR, the primary non-target product defined by the WP—namely, the main
contributor to background—is lengthened by the BP at both ends. Clearly, this DNA itself preferentially forms a hairpin via
intrastrand annealing between the lengthened ends, instead of being amplified by the TP. In contrast, the amplification of
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the primary target DNA is not affected, because it is defined by both the SSP and WP. The feasibility of the bridging PCR
has been validated by extending into unknown flanking regions of several known genes. Overall, this bridging PCR could
be an alternative to existing genome-walking methods.

Materials and reagents

Biological materials

1. Genome of Levilactobacillus brevis CD0817 [28-33], extracted using the Bacterial Genomic DNA Isolation kit (Tiangen
Biotech Co., Ltd., Beijing, China)

Reagents

1. 10x LA PCR buffer (Mg?* plus) (Takara, catalog number: RR042A)

2. 6x Loading buffer (Takara, catalog number: 9156)

3. LA Taq polymerase (hot-start version) (Takara, catalog number: RR042A)

4. dNTP mixture (Takara, catalog number: RR042A)

5. DL 5,000 DNA marker (Takara, catalog number: 3428Q)

6. 1x TE buffer (Sangon, catalog number: B548106)

7. Agarose (Sangon, catalog number: A620014)

8.1 M NaOH (Yuanye, catalog number: B28412)

9. 0.5 M EDTA (Solarbio, catalog number: B540625)

10. Goldview nucleic acid gel stain (10,000x) (Yeasen, catalog number: 10201ES03)

11. Tris (Solarbio, catalog number: T8060)

12. Boric acid (Solarbio, catalog number: B8110)

13. TaKaRa MiniBEST DNA Fragment Purification kit v4.0 (TaKaRa, catalog number: DV9761)
14. Primers (Sangon)

WP1: GTCGTAGTCATGTATCGTCCTAGTCATCTGCTTGTTCGTCAGTCAGCGTC
WP2: GTCGTAGTCATGTATCGTCCTAGTCTCAGTCAGTCAGTTGCAGTCAGTCT
WP3: GTCGTAGTCATGTATCGTCCTAGTCATCCAGAACAGTCGATTGGTTCAGC
BP: CAGTCAGTCTCAGCTAGTCAGTGTCGTCGTAGTCATGTATCGTCCTAGTC
TP: CAGTCAGTCTCAGCTAGTCAGTGTC

gadA-SSP1: TCCAAGAATCATCCGCAATCGTCA

gadA-SSP2: TGGTAACATCGTCACGGTTCTTTGG

gadA-SSP3: TAGCCTTGTACCCATCTTTACCGAA

gadR-SSP1: TCCTTCGTTCTTGATTCCATACCCT

gadR-SSP2: CCATTTCCATAGGTTGCTCCAAGG

gadR-SSP3: GGATACTGGCTAAAATGAATTAACTCGGATAA

hyg-SSP1: ACGGCAATTTCGATGATGCAGCTTG

hyg-SSP2: GGGACTGTCGGGCGTACACAA

hyg-SSP3: CTGGACCGATGGCTGTGTAGAAG

Solutions

1. 2.5x TBE buffer (see Recipes)
2. 0.5x TBE buffer (see Recipes)
3. 100 mM primer (see Recipes)
4. 10 mM primer (see Recipes)
5. 1.5% agarose gel (see Recipes)
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Recipes

1. 2.5x TBE buffer (pH 8.3)

Reagent Final concentration Amount
0.5 M EDTA solution 5mM 10 mL
Tris 225 mM 2749
Boric acid 225 mM 13.75¢
Ultrapure water n/a n/a
Total n/a 1,000 mL
This 2.5x TBE buffer can be stored at room temperature for 3 months.
2. 0.5x TBE buffer (pH 8.3)
Reagent Final concentration Amount
2.5x TBE buffer 0.5x 200 mL
Ultrapure water n/a 800 mL
Total n/a 1,000 mL

This 0.5x TBE buffer can be stored at room temperature for 3 months.

3.100 pM primer

Reagent Final concentration Quantity or Volume

Primer powder 100 uM

1x TE buffer 1x Volume specified by the supplier
Total n/a Volume specified by the supplier

Note: Take 10 pL of this primer solution to make 10 uM primer, and store the remaining solution at -80 °C.

4.10 pM primer

Reagent Final concentration Quantity or Volume
100 pM primer 10 uM 10 pL

1x TE buffer 1x 90 uL

Total n/a 100 puL

Note: Divide 10 xM primer into 10 uL/tube, then store these tubes at -20 °C.

5. 1.5% agarose gel

Reagent Final concentration Quantity or Volume
Agarose 1.5% 159

0.5x TBE buffer 0.5x 100 mL

Goldview nucleic acid gel stain (10,000x) 1x 10 uL

Total n/a 100 mL

Laboratory supplies

1. 0.2 mL PCR tubes (Kirgen, catalog number: KG2311)

2. 10 pL pipette tips (Sangon, catalog number: F600215)

3. 200 pL pipette tips (Sangon, catalog number: F600227)
4. 1,000 pL pipette tips (Sangon, catalog number: F630101)

5. 1,500 pL microcentrifuge tubes (Labselect, catalog number: MCT-001-150)

Equipment

1. PCR apparatus (Applied Biosystems, model: Biometra TAdvanced 96 PCR)

2. Electrophoresis apparatus (Beijing Liuyi, model: DYY-6C)
3. Gel imaging system (Bio-Rad, model: ChemiDoc XRS+)

Cite as: Li, M. et al. (2025). Bridging PCR-Based Genome-Walking Protocol. Bio-protocol 15(23): e5531. DOI:
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4. Microcentrifuge (Tiangen, model: TGear)

Software and datasets

1. Oligo v7.37 software (Molecular Biology Insights, Inc., USA)
2. DNASTAR Lasergene v7.1 software (DNASTAR, Inc., USA)

Procedure
A. Design of primers

The three WP sets used in this study are presented in Figure 1.

WP set 1

BP: 5’-CAGTCAGTCTCAGCTAGTCAGTGTC GTCGTAGTCATGTATCGTCCTAGTC
CAGTCAGTCTCAGCTAGTCAGTGTC GTCGTAGTCATGTATCGTCCTAGTCATCTGCTTGTTCGTCAGTCAGCGTC
1 ) L J

Ll 1

TP WP1

WP set 2

BP: 5’-CAGTCAGTCTCAGCTAGTCAGTGTC GTCGTAGTCATGTATCGTCCTAGTC
CAGTCAGTCTCAGCTAGTCAGTGTC GTCGTAGTCATGTATCGTCCTAGTCTCAGTCAGTCAGTTGCAGTCAGTCT
1 ) | ]
T T

TP wp2

WP set 3

BP: 5’-CAGTCAGTCTCAGCTAGTCAGTGTC GTCGTAGTCATGTATCGTCCTAGTC

CAGTCAGTCTCAGCTAGTCAGTGTC (I?TC GTAGTCATGTATCGTCCTAGTCATCCAGAAC AGTCGATTGGTTCAG(IZ
L J
Y T

TP WP3

Figure 1. Three walker primer (WP) sets used in this study and the interrelationship of WP, bridging primer (BP),
and tail primer (TP) in a WP set.

Critical: WP (50 nt), BP (50 nt), and TP (25 nt) are random oligo DNAs, with Tm values of 70-75, 70-75, and 60-65 °C,
respectively. BP is made by attaching TP to the 5" end of WP 5’ region.

Note: Design three WP sets so as to perform three parallel sets of bridging PCRs in a WP. The three WPs have an identical
5'region (25 nt) but completely different 3’ regions (25 nt). The identical 5’ region means that only one BP and one TP are
required, while the different 3’ regions endow WPs with individualized annealing patterns. Therefore, the three WP sets are
actually constituted by five primers, namely, three WPs, one BP, and one TP.

1. Design of WP.

a. Open the Oligo 7 software, click File and New Sequence to show Edit Sequence dialog box; type in a 50 nt arbitrary
sequence in Edit Sequence dialog box (Figure 2A) and then sequentially click Accept/Discard and Accept to accept the input
sequence (Figure 2B).

Cite as: Li, M. et al. (2025). Bridging PCR-Based Genome-Walking Protocol. Bio-protocol 15(23): e5531. DOI: 5
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Figure 2. Screenshots showing how to input an arbitrary primer sequence. (A) Discovery of Edit Sequence dialog box.
(B) How to accept the input sequence.

b. Click Analyze, Duplex Formation, and Current Oligo (Figure 3A) to assess primer dimer(s) (Figure 3B).
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Figure 3. Screenshots showing how to assess primer dimer(s). (A) Discovery of Duplex Formation and Current Oligo
under Analyze tab. (B) Output dimer(s).

c. Click Analyze, Hairpin Formation, and Current Oligo (Figure 4A) to assess primer hairpin(s) (Figure 4B).

Note: Edit this primer and then re-assess it if it shows a severe dimer(s) or hairpin(s) with Tm > 40 °C.

d. Return to the Edit Sequence dialog box (Figure 2A) by clicking Edit and Entire Sequence (Figure 5A). Change the
sequence according to the above analysis outcomes; click Accept/Discard and Accept (Figure 2B) and then minimize this
dialog box to show the dialog box shown in Figure 3A.

e. Repeat steps Alb—c to evaluate the sequence until satisfactory WP (Figure 5B) is obtained.

Notes:

1. The WP shown in Figure 5B is acceptable because it has no obvious primer dimer or hairpin.

Cite as: Li, M. et al. (2025). Bridging PCR-Based Genome-Walking Protocol. Bio-protocol 15(23): e5531. DOI: 6
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2. Fix the 5’ region (25 nt) of this WP, then add another arbitrary sequence (25 nt) to its 3’ end; repeat steps Alb—c to
evaluate this new primer until it is satisfactory. Three WPs are designed in this study.
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Figure 4. Screenshots showing how to check primer hairpin(s). (A) Discovery of Hairpin Formation and Current Oligo

under Analyze tab. (B) Output hairpin(s).
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Figure 5. Screenshots showing how to optimize the primer. (A) Discovery of Edit Sequence dialog box. (B) Output

primer hairpin(s).

2. Design a satisfactory TP by repeating steps Ala—e, just like designing the WP.
3. Create a BP by attaching the TP to the 5’ end of WP 5’ region (25 nt).
Note: Assess this BP by repeating steps Alb—c until a satisfactory BP is created.

4. Pick SSP.

a. Open the Oligo 7 software and click File and Open to input the known DNA sequence.
b. Click Change and Current Oligo Length to select and define the length of SSP (Figure 6A).

c. Assess the SSP by repeating steps Alb—c (Figure 6B).

Note: Redesign the SSP and evaluate it by repeating steps Alb—c until a satisfactory one (Figure 6B) is obtained, if the
current SSP forms a severe primer dimer(s) or hairpin(s) with Tm > 40 °C.
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Figure 6. Screenshots showing how to pick a sequence-specific primer (SSP). (A) Discovery of Current Oligo Length.
(B) Output primer dimer(s) and hairpin(s).

Critical: The SSP should have a Tm of 60-65 °C according to Mazars et al. [34].
B. Bridging PCR procedure

A bridging PCR set contains three rounds of nested PCR. The primary PCR is driven by WP and SSP1, the secondary PCR
is driven by TP, BP, and SSP2, and the tertiary PCR is driven by TP and SSP3 (Figure 7).

Critical: The working concentration of BP is only one twenty-fifth of TP or SSP2.
1. Primary bridging PCR.
a. Pipette primary bridging PCR components (Table 1) into a PCR tube.

Table 1. Primary bridging PCR mix

Reagent Final concentration Volume (pnL)
Genomic DNA Microbe, 10-100 ng/uL; or rice, 100-1,000 ng/uL 1

LA Taq polymerase (5 U/uL) 0.05 U/uL 0.5

WP (10 uM) 0.2 uM 1

SSP1 (10 pM) 0.2 uM 1

10x LA PCR buffer Il (Mg? plus)  1x 5

dNTP mixture (2.5 mM each) 0.4 mM each 8

Ultrapure water n/a 335

Total n/a 50

b. Mix the components well.
c. Centrifuge the tube at 3,000x g for 20 s at 4 °C.
d. Run PCR amplification (Table 2).

Table 2. Primary bridging PCR cycling conditions

Step Temperature Duration Cycle

Initial denaturation 95 °C 1 min 1

Denaturation 95 °C 20s

Annealing 65 °C 30s 5

Extension 72 °C 2 min

Cite as: Li, M. et al. (2025). Bridging PCR-Based Genome-Walking Protocol. Bio-protocol 15(23): e5531. DOI: 8

10.21769/BioProtoc.5531



bio-protocol

Published: Dec 05, 2025

|
Denaturation 95 °C 20s
Annealing 25°C 30s 1
Extension 72 °C 2 min
Denaturation 95°C 20s
Annealing 65 °C 30s 30
Extension 72 °C 3 min
Final extension 72 °C 5 min 1
Hold 4 forever 1

e. Take 1 uL of the product as template for secondary bridging PCR.
f. Store the remaining product at -20 °C.

SSP1  SSP2
— — m—

SSP3

}

Primary

|

25°C cycle helps WP partially anneal to unknown region,

generating target second strand

— |

I
I
i

{ Types | and Il are easily
1 diluted in the next PCR as they
i lack perfect sites for SSP2

Non-target molecules

I
1
I
I
1
I
I
1
I
I
I
I
I
I
I
I
1

\

, N 2
/ Major
BP plays as a carrier integrating K ;—*
=———— | TP into WP site at the end of '
—_— DNA ' Q
— \ = \
; H |
v 1 Type iii preferentially forms hairpin :
1
----------------------------- \ 1 as its terminal (WP) is longer than :
.‘—»— - —— ! . 1
Secondary| ! ; ! ; the overlap between BP and WP site v
i | |
\——— T ———— Py H = - e — <_ -
| Major Rare !
65°C cycles exponentially ! ;—1 H
. ' 1
v amplify target DNA E _ -— :
————— - - 1 = ) 4 !
——— - < — H = ==
1 I J— |
! extension ﬁ
\ The BP extended type iii is more likely to
\\ form hairpin than to hybridize with TP
—
Tertiary —
v
—— e ——
— o — — — — — — — —

Eventually target DNA becomes the major product

Figure 7. Schematic diagram of bridging PCR. WP: walker primer; BP: bridging primer; TP: tail primer; SSP: sequence-
specific primer. Thin solid lines: known sequences; thin dotted lines: unknown sequences.
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2. Secondary bridging PCR.
a. Pipette secondary bridging PCR components (Table 3) into a PCR tube.

Table 3. Secondary bridging PCR mix

Reagent Final concentration Volume (uL)
Primary product n/a 1

LA Taq polymerase (5 U/uL) 0.05 U/uL 0.5

TP (10 pM) 0.2 uM 1

SSP2 (10 pM) 0.2 uM 1

BP (1uM) 8nM 0.4

10x LA PCR buffer Il (Mg?* plus) 1x 5

dNTP mixture (2.5 mM each) 0.4 mM each 8

Ultrapure water n/a 33.1

Total n/a 50

Critical: The working concentration of BP is only one twenty-fifth of TP or SSP2.
Note: If necessary, dilute the primary bridging PCR product 10-1,000 times.

b. Mix the components well.
c. Centrifuge the tube at 3,000x g for 20 s at 4 °C.
d. Run PCR amplification (Table 4).

Table 4. Secondary bridging PCR cycling conditions

Step Temperature Duration Cycle
Initial denaturation 95 °C 1 min

Denaturation 95 °C 20S

Annealing 65 °C 30S 25-45
Extension 72 °C 1.5 min

Final extension 72 °C 5 min

e. Put the PCR product onto ice.
f. Take 1 pL of the product as the template for tertiary bridging PCR.
g. Store the remaining product at -20 °C.

3. Tertiary bridging PCR.
a. Pipette tertiary bridging PCR components (Table 5) into a PCR tube.

Table 5. Tertiary bridging PCR mix

Reagent Final concentration Volume (pL)
Secondary PCR product nla 1

LA Taq polymerase (5 U/uL) 0.05 U/uL 0.5

TP (10 uM) 0.2 uM 1

SSP3 (10 pM) 0.2 M 1

10x LA PCR buffer Il (Mg?* plus) 1x 5

dNTP mixture (2.5 mM each) 0.4 mM each 8

Ultrapure water nla 335

Total n/a 50

Critical: Dilute the secondary bridging PCR product 10-1,000 times if necessary.

b. Mix the components well.
c. Centrifuge at 3,000x g for 20 s at 4 °C.
d. Run PCR amplification (Table 6).

Cite as: Li, M. et al. (2025). Bridging PCR-Based Genome-Walking Protocol. Bio-protocol 15(23): e5531. DOI: 10
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Table 6. Tertiary fork PCR cycling conditions

Step Temperature Duration Cycle
Initial denaturation 95 °C 1 min

Denaturation 95 °C 20S

Annealing 65 °C 30S

Extension 72°C 1.5 min 15-30
Final extension 72 °C 5 min

Hold 4 forever

e. Store the PCR product at -20 °C.
C. Electrophoresis

1. Add 5 pL of each bridging PCR product and 1 pL of 6x loading buffer.

2. Transfer the mixture into a 1.5% agarose gel supplemented with 1x Goldview nucleic acid gel stain.
3. Electrophorese at a voltage of 5 VV/cm for 30 min.

4. Check the gel using the ChemiDoc XRS+ imaging system (Figure 8).

1000by

Figure 8. Genome walking of gadA (A) and gadR (B) of Levilactobacillus brevis CD 0817 and hyg (C) of rice. WP1,
WP2, and WP3 denote the three parallel bridging PCR sets. P: primary PCR; S: secondary PCR; T: Tertiary PCR; and M:
DNAS5000 Marker. The white arrowheads indicate the target DNA bands.
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D. Recovery of PCR product

1. Mix 40 uL of secondary/tertiary bridging PCR product and 8 pL of 6x loading buffer.

2. Transfer the mixture into a 1.5% agarose gel supplemented with 1x Goldview nucleic acid gel stain.

3. Electrophorese at a voltage of 5 VV/cm for 30 min.

4. Check the gel using the ChemiDoc XRS+ imaging system (Figure 9) and cut out the target DNA band(s) with a knife.
5. Purify the DNA band(s) from the cut gel using the Mini-BEST Agarose Gel DNA Extraction kit v4.0.

E. DNA sequencing

Mail the purified product(s) to Sangon Biotech Co., Ltd for sequencing.

Data analysis

1. Analyze the sequencing data using the MegAlign software.
a. Open the software, then click File and Enter Sequences to input DNA sequences to be analyzed (Figure 9).

E_:: MegAlign

File Edit Align View Options NetSearch Window Help

IZ Untitled

Sequence Name | <Pos=1 < Pos = 4546
-EEN E+ /" ldlm 1§ @ = § =W & =
GIGGITIICGICACGTITGITIIGETCGTTIIITAGGGOGGTAGT | XDOODDOTNOONNNOTT

T T T

B consensus
2 Sequences

GEITGEIGCAGTGCTITICGITIGEIGET
T T

T T
10 20 20 40 S0 €0 7C

T T
4550 45€0

gadA.seq

F’m bridging pcr.seg

AGGCGATGCAACACATCATTAAGAAGT CTGCCTICACCCAAATTGCAACGGTCAATTTGACAGCAATAGG
GATTAGCTACAGTGATCCCACTGATGETAACATGETCCTICACGETICTITGETAGTGGETAGGCAGETACT

| GGGCCAGATAAGCCTAR]

=4

Figure 9. Screenshots showing how to input DNA sequences

b. Click Align and By Clustal W Method (Figure 10A) to get the result (Figure 10B).
Note: The experiment is considered successful if the SSP3-sided segment of the bridging PCR product overlaps the known
DNA (Figure 10B).

Validation of protocol

This protocol or parts of it has been used and validated in the following research articles:
Lin et al. [1]. Bridging PCR: An Efficient and Reliable Scheme Implemented for genome walking. Current Issues in
Molecular Biology (Figure 8).

Cite as: Li, M. et al. (2025). Bridging PCR-Based Genome-Walking Protocol. Bio-protocol 15(23): e5531. DOI: 12
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Fle Edit Align View Options NetSearch Window Help

By Jotun Hein Method Shift+Ctrl+) ==
By Clustal V Method Ctrl+ K
By Clustal W Methed Crrlel
One Pair »

<Pos = 4545

Unalign All Ctrls=

Set Residue Weight Table
Method Parameters...

FE MegAlign
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-
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Figure 10. Screenshots showing how to analyze the input sequences. (A) Discovery of By Clustal W Method. (B) Final
outcome.

General notes and troubleshooting

General notes

1. The bridging PCR protocol is a universal genome-walking tool.

2. Secondary bridging PCR amplification can generally release a positive result.

3. Simultaneously performing parallel bridging PCRs will improve the success and efficiency of genome walking.

4. In secondary bridging PCR, the working concentration of BP is very low, and its role is just to introduce a TP sequence
to the 5’ end of the WP 5’ region. The real amplifiers are TP and SSP3.

5. The ends of non-target DNA primed by WP are lengthened by BP. This DNA cannot be amplified by TP in the next PCR,
because it forms a hairpin structure via the lengthened ends.

Troubleshooting

Problem 1: Secondary/tertiary bridging PCR does not produce target DNA(S).

Possible causes: Non-target amplification efficiency is high, or target amplification is insufficient.

Solutions: Dilute the previous product properly and use it as the template for the next PCR. If this is still ineffective, redesign
an SSP set.

Problem 2: DNA band(s) cannot be directly sequenced.
Possible cause: There may be interference from non-target background.
Solution: T-clone the target DNA band and then sequence [35].

Problem 3: The DNA band(s) are not the target.
Possible cause: There may be sites homologous to SSP(s) in other regions of the genome.
Solution: Redesign an SSP set.

Cite as: Li, M. et al. (2025). Bridging PCR-Based Genome-Walking Protocol. Bio-protocol 15(23): e5531. DOI: 13
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