
 
 

 

Cite as: Taguchi, S. et al. (2025). Detailed Protocol for Segmentation and Quantification of Overlapping Prospore 
Membranes using DeMemSeg. Bio-protocol 15(23): e5520. DOI: 10.21769/BioProtoc.5520 
Copyright: © 2025 The Authors; exclusive licensee Bio-protocol LLC. 
This is an open access article under the CC BY-4.0 license (https://creativecommons.org/licenses/by/4.0/). 

1 

 

Published: Dec 05, 2025 

Open Access 

Detailed Protocol for Segmentation and 
Quantification of Overlapping Prospore 
Membranes using DeMemSeg 
 
Shodai Taguchi1, 2, 3, 4, *, Keita Chagi4, Hiroki Kawai4, Kenji Irie2 and Yasuyuki Suda2, * 
 
1Ph.D. Program in Humanics, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Ibaraki, Japan 
2Laboratory of Molecular Cell Biology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan 
3Bioinformatics Laboratory, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan 
4Research and Development Department, LPIXEL Inc., Chiyoda, Tokyo, Japan 
*For correspondence: taguchi.shodai.td@gmail.com; ysuda@md.tsukuba.ac.jp 
 
 

Abstract 
 
Quantitative analysis of biological membrane morphology is essential for understanding fundamental cellular processes such 
as organelle biogenesis and remodeling. While manual annotation has been the standard for complex structures, it is 
laborious and subjective, and conventional automated methods often fail to accurately delineate overlapping objects in 2D 
projected microscopy images. This protocol provides a complete, step-by-step workflow for the quantitative analysis of 
overlapping prospore membranes (PSMs) in sporulating yeast. The procedure details the synchronous induction of 
sporulation, acquisition of 3D fluorescence images and their conversion to 2D maximum intensity projections (MIPs), and 
the generation of a custom-annotated dataset using a semi-automated pipeline. Finally, it outlines the training and application 
of our mask R-CNN-based model, DeMemSeg, for high-fidelity instance segmentation and the subsequent extraction of 
morphological parameters. The primary advantage of this protocol is its ability to enable accurate and reproducible 
segmentation of individual, overlapping membrane structures from widely used 2D MIP images. This framework offers an 
objective, efficient, and scalable solution for the detailed quantitative analysis of complex membrane morphologies. 
 
 

Key features 
● Provides a mask R-CNN-based pipeline to accurately segment individual, overlapping membrane structures resulting 

from 2D maximum intensity projections of 3D image stacks. 
● Optimized for quantifying the dynamic morphology of yeast prospore membranes (PSMs), a key model system for 

studying de novo membrane biogenesis. 
● Presents a complete workflow from single-cell isolation using a custom CellPose model to detailed manual annotation 

for creating high-quality training datasets. 
● Enables robust quantitative phenotyping by extracting morphological parameters (e.g., length, roundness) to distinguish 

subtle differences between wild-type and mutant strains. 
 
Keywords: Deep learning, Instance segmentation, Mask R-CNN, Overlapping objects, Quantitative image analysis, 
Microscopy image processing, Yeast sporulation, Cellular morphology 
 
This protocol is used in: Cell Structure and Function (2025), DOI: 10.1247/csf.25032 
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Graphical overview 
 

 
 
Graphical overview of the DeMemSeg pipeline for automated segmentation and quantitative analysis 
 
 

Background 
 
Understanding fundamental cellular processes like organelle biogenesis, remodeling, and trafficking often requires 
quantitative analysis of biological membranes. This involves measuring key morphological features—such as perimeter and 
roundness—to describe their geometric shape. A key challenge in this field is the accurate segmentation of individual 
membrane structures from microscopy images, which is often a prerequisite for obtaining reliable quantitative data. The 
budding yeast prospore membrane (PSM), a model for de novo membrane formation, presents a typical challenge where 
dynamically growing membranes frequently overlap when visualized in 2D maximum intensity projection (MIP) images. 
Historically, segmenting such complex structures has relied on meticulous manual annotation. While often considered the 
gold standard for accuracy, this method is extremely time-consuming, laborious, and prone to inter-observer variability, 
making it impractical for large-scale studies. Traditional automated methods based on intensity thresholding [1] or edge 
detection [2] often fail to accurately delineate boundaries in images with low contrast or, critically, to separate overlapping 
instances. The advent of generalist deep learning tools, most notably CellPose [3] and ilastik [4], has revolutionized 
biological image analysis by enabling robust, automated segmentation of individual cells, thereby greatly facilitating single-
cell image analysis from dense populations. However, while these tools are highly effective for delineating whole-cell 
boundaries, their utility is often limited when analyzing more detailed and complex intracellular structures. Specifically, 
they frequently struggle to resolve extensively overlapping subcellular components like the PSMs within a single cell. 
Similarly, while large-scale foundation models like the Segment Anything Model (SAM 2) [5] show impressive zero-shot 
capabilities, our findings indicate they may not achieve the instance-level precision required for resolving the specific, 
artificial overlaps created by MIP imaging without specialized prompting or fine-tuning. 
The DeMemSeg protocol presented here offers several advantages over these existing methods for this specific task. Its 
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primary strength lies in the custom-trained mask R-CNN model, which is specifically optimized to recognize and separate 
overlapping PSMs in 2D MIP images with high fidelity, a capability where generalist models may falter. By providing a 
complete, automated workflow from single-cell isolation to instance segmentation, it dramatically improves efficiency and 
reproducibility compared to purely manual methods. The protocol's utility is demonstrated by its ability to yield quantitative 
data statistically comparable to manual annotation and to successfully characterize the complex morphological phenotype 
of an untrained mutant strain. The main limitation of this protocol is its supervised nature, requiring the upfront, labor-
intensive creation of a high-quality annotated dataset. Additionally, as a 2D-based analysis, it cannot resolve the true 3D 
spatial relationships between structures, a general limitation of MIP image analysis. 
Beyond yeast PSMs, the principles of this protocol are broadly applicable. The workflow of using a general cell segmentation 
model (like CellPose) for preprocessing and isolation, followed by training a specialized instance segmentation model (like 
mask R-CNN) on cropped single-cell images, can be adapted to analyze other challenging, overlapping subcellular structures, 
such as mitochondrial networks, the Golgi apparatus, or endoplasmic reticulum subdomains in various cell types. It is 
particularly well-suited for quantitative phenotyping in genetic or chemical screens where precise morphological 
measurements are required. 
 
 

Materials and reagents 
 
Biological materials 
 
1. Saccharomyces cerevisiae strains, SK1 background [6] 
a. WT strain, YSIY1218 
MATa/MATα his3ΔSK/his3ΔSK ura3/ura3::pRS306-mCherry-Spo2051–91 trp1::hisG/trp1::hisG leu2/leu2 arg4-NspI/ARG4 
lys2/lys2 ho∆::LYS2/ho∆::LYS2 rme1::LEU2/RME1 AUR1::PACT1-LexA-ER-haVP16::AUR1-C/AUR1::PACT1-LexA-ER-
haVP16::AUR1-C 
NDT80::hphNT1::P4×lexA-9×Myc-NDT80 /NDT80::hphNT1::P4×lexA-9×Myc-NDT80 
b. gip1∆ strain, YSIY793 
MATa/MATα his3ΔSK/his3ΔSK ura3/ura3::pRS306-mCherry-Spo2051–91 trp1::hisG/trp1::hisG leu2/leu2 arg4-NspI/ARG4 
lys2/lys2 ho∆::LYS2/ho∆::LYS2 rme1::LEU2/RME1 
AUR1::PACT1-LexA-ER-haVP16::AUR1-C/AUR1::PACT1-LexA-ER-haVP16::AUR1-CNDT80::hphNT1::P4×lexA-9×Myc-
NDT80 /NDT80::hphNT1::P4×lexA-9×Myc-NDT80 gip1∆::kanMX6/gip1∆::kanMX6 
 
2. The plasmid used in this study [6] was pRS306-mCherry-Spo2051–91 URA3, integration, pTEF1-mCherry-Spo2051–91 

 
Reagents 
 
1. Yeast nitrogen base without amino acids (Difco YNB, catalog number: 291940) 
2. D(+)-glucose (FUJIFILM Wako Pure Chemical Corporation, catalog number: 045-31167) 
3. STAR agar L-grade 01 (Rikaken Co., catalog number: RSU-AL01-500G) 
4. Bacto peptone (Thermo Fisher Scientific, catalog number: 211677) 
5. Bacto yeast extract (Thermo Fisher Scientific, catalog number: 212750) 
6. Adenine (6-Aminopurine) (FUJIFILM Wako Pure Chemical Corporation, catalog number: 012-11512) 
7. Potassium acetate (FUJIFILM Wako Pure Chemical Corporation, catalog number: 167–3185) 
8. β-Estradiol (Sigma-Aldrich, catalog number: E8875) 
9. Amino acid mixture (five amino acid drop-out: arginine, leucine, uracil, histidine, tryptophan) (mixed manually in our 
lab) 
 
Solutions 
 
1. SD-RLU (see Recipes) 
2. YPD medium (see Recipes) 
3. YPA medium (see Recipes) 
4. Sporulation medium (see Recipes) 
5. Amino acid mixture (see Recipes) 
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6. 2 mM β-Estradiol (see Recipes) 
 
Recipes 
 
1. SD-RLU 

Reagent Final concentration Quantity or volume 
Yeast nitrogen base without amino acids 6.7 g/L 3.35 g 
Amino acid mixture 1 g/L 0.5 g 
L-Histidine 0.16 g/L 0.08 g 
L-Tryptophan 0.16 g/L 0.08 g 
20% D(+)-glucose solution 2% D(+)-glucose 50 mL 
Deionized water n/a 450 mL 
Total n/a 500 mL 

a. Dissolve all ingredients except 20% D(+)-glucose solution in 450 mL of deionized water. 
b. Adjust the pH to 6.5 if necessary and then autoclave. 
c. Allow medium to cool to ~55 °C and then add 50 mL of 20% dextrose (glucose) solution to 2% final concentration. 
d. For making plates, add STAR agar L-grade 01 (2% at final concentration) before autoclaving. 
 
2. YPD medium 

Reagent Final concentration Quantity or volume 
Bacto yeast extract 10 g/L 5 g 
Bacto peptone 20 g/L 10 g 
Adenine 0.03 g 0.015 g 
20% D(+)-glucose solution 2% D(+)-glucose 50 mL 
Deionized water n/a 450 mL 
Total n/a 500 mL 

a. Dissolve all ingredients except 20% D(+)-glucose solution in 450 mL of deionized water and then autoclave. 
b. Allow medium to cool to ~55 °C and add 50 mL of 20% dextrose (glucose) solution to 2% final concentration. 
c. For making plates, add STAR agar L-grade 01 (2% at final concentration) before autoclaving. 
 
3. YPA medium 

Reagent Final concentration Quantity or volume 
Bacto yeast extract 10 g/L 5 g 
Bacto peptone 20 g/L 10 g 
Adenine 0.03 g 0.015 g 
20% potassium acetate solution 2% potassium acetate 50 mL 
Deionized water n/a 450 mL 
Total n/a 500 mL 

a. Dissolve all ingredients except the potassium acetate solution in 450 mL of deionized water and then autoclave. 
b. Allow medium to cool to ~55 °C and add 50 mL of 20% potassium acetate solution to 2% final concentration. 
 
4. Sporulation medium 

Reagent Final concentration Quantity or volume 
20% potassium acetate solution 2% potassium acetate 50 mL 
Deionized water n/a 450 mL 
Total n/a 500 mL 

a. Dissolve all ingredients and autoclave. 
 
5. Amino acid mixture 

Reagent Final concentration Quantity or volume 
Adenine (012-11512) n/a 0.5 g 
L-Alanine (010-01042) n/a 2 g 
L(+)-Arginine (017-04612) n/a (2 g)* 
L-asparagine monohydrate (019-04812) n/a 2 g 
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DL-aspartic acid (010-04842) n/a 2 g 
L-Cysteine hydrochloride monohydrate (033-05272) n/a 2 g 
L(+)-Glutamine (074-00522) n/a 2 g 
L-Glutamic acid hydrochloride (071-02092) n/a 2 g 
Glycine (073-00732) n/a 2 g 
L-Histidine (084-00682) n/a (2 g)* 
myo-Inositol (092-00282) n/a 2 g 
L(+)-Isoleucine (121-00862) n/a 2 g 
L-Leucine (124-00852) n/a (10 g)* 
L(+)-Lysine monohydrochloride (121-01462) n/a 2 g 
L-Methionine (133-01602) n/a 2 g 
p-Aminobenzoic acid (015-2332) n/a 0.2 g 
L(-)-Phenylalanine (161-01302) n/a 2 g 
L(-)-Proline (161-04602) n/a 2 g 
L-Serine (199-00402) n/a 2 g 
L(-)-Threonine (204-01322) n/a 2 g 
L-Tryptophan (204-03382) n/a (2 g)* 
L-Tyrosine (202-03562) n/a 2 g 
Uracil (212-00062) n/a (2 g)* 
L-Valine (228-00082) n/a 2 g 

*Quantities enclosed in parentheses indicate dropouts. 
All amino acids are from FUJIFILM Wako Pure Chemical Corporation. 
 
6. 2 mM β-Estradiol 

Reagent Final concentration Quantity or volume 
β-Estradiol 2 mM n/a 
Ethanol n/a  

a. Dissolve β-Estradiol in 100% ethanol to a final concentration of 2 mM. 
b. Aliquot into 1.5 mL tubes and store at -30 °C. 
 
Laboratory supplies 
 
1. Sterile Veritable Petri dishes (Shallow, catalog number: 36-3412) 
2. 24 × 50 mm cover slip (Matsunami Glass Ind., Ltd., No.1, catalog number: C024501) 
3. 18 × 18 mm cover slip (Matsunami Glass Ind., Ltd., No.1, catalog number: C218181) 
4. 250 mL Erlenmeyer flask (Corning, catalog number: 431144) 
5. Incubator (PHC Holdings Corporation, catalog number: MIR-154-PJ) 
6. Shaking water bath (Personal-11, TAITEC CORPORATION, catalog number: 0069409-000) 
7. Clean bench (PHC Holdings Corporation, catalog number: MCV-131BNF) 
8. Vortex mixer (LMS Laboratory and Medical Supplies, Brigachtal, catalog number: VTX-3000L) 
9. Low speed benchtop centrifuge (TOMY, catalog number: LC-200) 
 
 

Equipment 
 
1. THUNDER Imager Live Cell system (Leica Microsystems; includes a DFC9000 GTC sCMOS camera) 
2. Workstation for computation (HP, OMEN Desktop; equipped with an NVIDIA GeForce RTX 3060 Ti GPU) 
3. iPad Air (5th generation) (Apple Inc., model: MM9C3J/A) 
4. Apple Pencil (2nd generation) (Apple Inc., model: A2051) 
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Software and datasets 
 
1. CellPose 3.1.0 (Oct 30, 2024, BSD, free) 
2. MMdetection, v3.3.0 (Jan 5, 2024, Apache, free) 
3. Fiji/ImageJ, 2.16.0/1.54p (Feb 17, 2025, GPL, free) 
4. spacedesk Driver, 2.1.43 free (non-commercial private license) 
5. Docker Engine, 27.1.4 (Dec 17, 2024, Apache, free) 
 
 

Procedure 
 
This protocol is divided into two main parts. Part A details the complete procedure used to develop and train the DeMemSeg 
model, serving as a reference for users who wish to create a similar custom model for their own biological structures. Part 
B provides a ready-to-use guide for segmenting yeast prospore membranes (PSMs) using our pretrained DeMemSeg model. 
All computational steps are performed on a workstation equipped with a suitable NVIDIA GPU (e.g., RTX 3060 Ti 8GB 
VRAM). The entire software environment is managed using Docker to ensure reproducibility. 
We highly recommend using an integrated development environment (IDE) like Visual Studio Code (VS Code) with its Dev 
Containers or Docker extension. This allows you to directly edit files and run commands inside the container from a user-
friendly interface. 
 
A. Development and training of the DeMemSeg model 
 
This section describes the step-by-step procedure followed to create the annotated dataset and train the DeMemSeg model 
for PSM segmentation. Researchers aiming to train a model for other structures can adapt this workflow. The scripts and 
detailed instructions for this process are available in a GitHub repository designed for this purpose: 
https://github.com/MolCellBiol-tsukuba/DeMemSeg-train. 
 
A1. Yeast culture and sporulation induction 
1. Prepare yeast cultures 
a. Streak yeast strains from frozen stocks onto a YPD plate. Then, streak single colonies onto appropriate SD-RLU agar 
plates and incubate at 30 °C for 2–3 days. 
b. Inoculate a single colony into 3 mL of liquid SD-RLU medium in a test tube and grow for 24 h at 30 °C with vigorous 
shaking at 200 rpm. 
 
2. Induce synchronous sporulation 
a. Dilute 800 μL of the overnight pre-culture into 15 mL of YPA liquid medium in a 250 mL Erlenmeyer flask and incubate 
for 16 h at 30 °C. 
b. To harvest and wash the cells, transfer the entire YPA culture to a 50 mL conical tube and pellet by centrifugation at 
2,150× g for 3 min at room temperature. After discarding the supernatant, rinse the original culture flask with 15 mL of 
sterile water to collect any remaining cells and use this rinse to resuspend the cell pellet. Wash the cells by repeating the 
centrifugation step. Finally, resuspend the resulting pellet in sporulation medium (2% KOAc) to an optical density (OD600) 
of 2.0 and transfer to a 250 mL flask to resume incubation. 
c. After 6 h of vigorous shaking, add 2 mM β-Estradiol to a final concentration of 2 μM to induce NDT80 expression for the 
synchronized induction of sporulation. 
 
A2. Image acquisition and preprocessing 
1. Prepare samples for microscopy 
a. Collect 200–300 μL of the sporulating cell culture at each desired time point following induction (e.g., every 30 min). 
b. Perform a brief centrifugation (spin down) at a low speed (e.g., 500× g for 10 s) to form a soft cell pellet. 
c. Gently resuspend the cell pellet by pipetting at the bottom of the tube. 
d. Place approximately 5 μL of this concentrated cell suspension onto a 24 × 50 mm coverslip. 
e. Gently place an 18 × 18 mm coverslip on top of the cell suspension to create a sandwich, spreading the cells between the 
two glass surfaces. 
f. Absorb excess liquid by lightly pressing a Kimwipe on the top coverslip. 

https://github.com/MolCellBiol-tsukuba/DeMemSeg-train
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Note: Our sample preparation method helps to gently immobilize and flatten the yeast cells into a monolayer. This approach 
improves image quality by bringing more cells into a single focal plane. Since the cells are not firmly embedded, this method 
is also well-suited for capturing snapshots of cellular states at specific time points. If you have a different preparation 
method, you can certainly use your standard procedure. After sample preparation, acquire images immediately using a 
microscope. 
 
2. Acquire Z-stack images 
a. Place the prepared coverslip sandwich onto a microscope slide for imaging. 
b. Using the Leica THUNDER Imager system with a HC PL APO 100×/1.40 OIL objective, acquire 3D Z-stacks (40–50 
slices, 0.21 μm intervals) of the cells with the mCherry-labeled PSMs (mCherry-Spo2051–91). 
 
3. Preprocess raw images 
a. To reduce haze in the raw 3D Z-stack images, apply an image restoration or deconvolution method. For example, use the 
Small Volume Computational Clearing function in the Leica software or an equivalent image restoration function available 
on other microscope systems. 
b. Generate 2D images by applying a maximum intensity projection (MIP) to the cleared Z-stacks. Export these 2D MIP 
images as TIF files. 
Tip: Data organization and file naming: We recommend establishing a consistent file and folder naming convention. Create 
a project folder for each experiment that includes the strain name or condition (e.g., Project001_YSIY1218). When exporting 
images, embed key metadata into the filename. For example, manually rename the software-generated file Series002 to 
Series002_420min to indicate the imaging time point. The Leica software will automatically append its processing suffix 
(e.g., _Lng_SVCC_Processed001), resulting in a descriptive final filename like Series002_420min_Lng_SVCC_Processed 
001.tif. This practice allows filenames to serve as self-contained metadata that can be used for sorting and analysis later. 
 
A3. Custom training dataset construction 
1. Create a custom CellPose model for preprocessing 
a. Install CellPose with its graphical user interface (GUI). To manually create annotations, a separate local installation of 
CellPose is required, as the primary DeMemSeg Docker environment is configured for command-line execution and does 
not support the GUI. Follow the official installation instructions available at 
https://cellpose.readthedocs.io/en/latest/installation.html. 
b. Prepare training data via manual annotation. Launch the local CellPose GUI and import a representative subset of your 
2D MIP images. Use the drawing tools to manually trace the boundaries of individual cells. For this training set, it is critical 
to only annotate cells that are complete (not cut off by the image border) and alive. Live cells can be distinguished from 
dead cells by their distinct PSM fluorescence, whereas dead cells often exhibit a diffuse, whole-cell signal; exclude these 
dead and incomplete cells from your annotations. 
c. Train the custom CellPose model. Within the CellPose GUI, initiate model training using your newly created annotations. 
Configure the training with the following parameters: a learning rate of 0.1, weight decay of 0.0001, and train for 10,000 
epochs. Once training is complete, export the resulting custom model file for use in the main DeMemSeg pipeline. 
Tip: For detailed, step-by-step technical instructions on how to train a custom model in CellPose 2.0, refer to established 
online guides such as the one found at https://mouseland.github.io/research/posts/cellpose2.html. 
 
2. Isolate and process single-cell images 
a. Apply the custom-trained CellPose model from the previous step to your full set of MIP images. This will automatically 
segment all valid single cells according to the learned criteria. 
b. For each segmented cell, crop a 200 × 200 pixel region centered on its centroid. This process generates several image 
types for each cell, which are saved to separate folders for subsequent steps. crop_image: The raw 200 × 200 pixel region 
cropped directly from the multi-channel MIP image. extract_image: The crop_image with the corresponding CellPose mask 
applied to blank out any neighboring cells or background, isolating the single target cell. gray_image: A grayscale version 
of the extract_image (Figure 1). 

https://cellpose.readthedocs.io/en/latest/installation.html
https://mouseland.github.io/research/posts/cellpose2.html
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Figure 1. Example of the output directory structure. An example of the directory hierarchy created after running the 
CellPose-based single-cell extraction step. A main output directory, CPsegm_PSM, is generated within each project 
directory. Inside, results for each source image are organized into individual sub-directories. These contain the crop_image 
(a simple crop around the cell), the extract_image (an isolated single cell based on the segmentation mask), and its grayscale 
version, gray_image. 
 
3. Manually annotate target structures (PSMs): 
a. Create a stack image with image label as metadata in Fiji/ImageJ (Figure 2). 
b. Manual annotation setup (Figure 3): For precise tracing, establish a desktop connection between your PC and an iPad 
using software such as Spacedesk. This allows for the use of an Apple Pencil as a drawing input. 
c. Open images in Fiji/ImageJ. For each cell to be annotated, open the corresponding single-cell image from the 
extract_image folder. This image will serve as the base for creating a stack of regions of interest (ROIs). 
d. Trace PSM boundaries. Using the Freehand selection tool, carefully trace the contour of a single PSM. Add this selection 
to the ROI Manager. Repeat this process for every individual PSM within the image, saving each as a separate ROI. Save 
the annotation files. For each annotated image, create a dedicated folder. Within this folder, save the set of ROIs from the 
ROI Manager as a .zip file (e.g., Stack.zip). It is also recommended to save the original stack image as a .tif file (e.g., 
Stack.tif) in the same folder for quality control. 
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Figure 2. Create a stack image from cropped images. (A) Select all extract images in “extract_image” directory and 
drag/drop to Fiji/ImageJ. (B) From the menu bar, select Image > Stacks > Images to Stack. Mark the checkbox “Use title as 
labels” and select Copy (center) in the Method box. (C) Sort stack slices for consistency. From the menu bar, select Image > 
Stacks > Tools > Stack Sorter. Select “Sort by Label” in the Stack Sorter window. The slices are sorted by their image name. 
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Figure 3. Manual annotation setup. (A) Use an iPad as a sub-monitor connected to a PC running the Fiji app. Tracing 
prospore membranes (PSMs) with an Apple Pencil. Click Add to register the PSM as a region of interest (ROI). (B) Save all 
ROIs (select all ROIs, click More > Save). 
 
4. Finalize the dataset for training 
a. Collect a sufficient number of ROIs. Proceed to the next step after you have annotated a sufficient number of individual 
PSMs. For example, in our original work, we used approximately 7,000 ROIs to achieve the reported performance [7].  
b. Convert ROIs to binary masks. The ROIs saved from ImageJ's ROI Manager as a .zip file (as described in section A3.3) 
must be converted into binary mask images. To do this, run the provided rois2mask.py script. This script processes the .zip 
file and generates a separate binary mask image for each ROI, where the annotated region has a pixel value of 1 and the 
background is 0.  
c. Split the dataset. Next, randomly divide the entire set of image-mask pairs into training, validation, and testing sets using 
an 8:1:1 ratio. It is critical to ensure that each original image and its corresponding mask remain paired during this process. 
d. Create the COCO dataset. Finally, generate the annotation file in the COCO format, which is required by the MMdetection 
framework. Run the provided create_coco_annotations.py script, which compiles all annotations, including the image 
filenames and their corresponding masks in RLE format, into a single JSON file. This file is the final dataset used to train 
the model. 
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A4. DeMemSeg model training 
1. Set up the training environment 
a. Use the provided Dockerfile (available in the repository) to build and run a container with all necessary dependencies 
(MMdetection, PyTorch, etc.). 
 
2. Configure and run training 
a. Modify the model configuration file (e.g., configs/dememseg_config.py) to point to your new COCO-formatted dataset. 
This typically involves updating the data_root and annotation file path variables. 
b. Adjust hyperparameters in the configuration file if necessary (e.g., learning rate, batch size). For reference, our final 
DeMemSeg model used a ResNet-50 backbone, SGD optimizer, 0.0025 learning rate, and a batch size of 4. 
c. Start the training process from the command line inside the Docker container. 
 
3. Evaluate and select the best model 
a. Monitor the segm_mAP on the validation set during training by inspecting the generated log files or using visualization 
tools like TensorBoard if configured. 
b. After training is complete, select the model checkpoint (pth file) that provides the best performance based on your chosen 
metrics (e.g., highest overall segm_mAP or highest segm_mAP_75 for precision). 
c. The final trained model checkpoint can then be used for inference as described in section B2. 
Note: The model selection criteria should align with your research goal. For precise shape analysis, prioritizing 
segm_mAP_75 is recommended, as discussed in the main research article. 
 
B. Performing inference on PSMs with the pretrained DeMemSeg model 
 
This section provides a step-by-step guide for using our pretrained DeMemSeg model to segment PSMs. All necessary code 
and models are available in our primary GitHub repository: https://github.com/MolCellBiol-tsukuba/DeMemSeg. 
 
B1. Environment setup 
1. Clone the DeMemSeg GitHub repository and navigate into its directory. 
 
```bash 
git clone https://github.com/MolCellBiol-tsukuba/DeMemSeg.git 
cd DeMemSeg 
``` 
 
2. Build and run the Docker Container. Use the provided Dockerfile to create a containerized environment with all required 
dependencies. This ensures complete reproducibility of the software environment. 
 
```bash 
docker build -t dememseg-env:latest . docker build -t dememseg-env:latest . 
docker run -it --name dememseg_container --gpus all -v "$(pwd)":/workspace -p 
8888:8888 dememseg-env:latest 
``` 
 
3. Connect to the Container with an IDE. For ease of use in editing files and running commands, we recommend connecting 
to the running dememseg_container using Visual Studio Code (VS Code) with the Docker extension. 
 
B2. Running the inference and analysis workflow 
1. Prepare input images: Place your 2D MIP images of PSMs into a designated input folder inside the repository, for example, 
input_images/. 
2. Open the Jupyter Notebook named main_DeMemSeg.ipynb. 
3. Specify input and output paths: In the initial cells of the notebook, you must modify the parameters to set the correct paths 
to your input image folder and your desired output folder. Following the examples provided in the notebook is the 
recommended way to get started. 
4. Execute the notebook cells. Execute all the cells in the notebook. The notebook is designed to automatically perform the 
entire pipeline: 

https://github.com/MolCellBiol-tsukuba/DeMemSeg
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a. Cell cropping: It first applies the provided custom CellPose model to identify and crop valid single cells. 
b. PSM segmentation: It then runs inference with the pretrained DeMemSeg model on each cropped cell image. 
c. (Optional) Morphological analysis: Finally, it can calculate morphological parameters from the segmentation masks and 
generate quantitative plots. 
 
B3. Locating and interpreting the output 
1. Check the output directory. The results of the pipeline, including segmented mask images, JSON files with instance 
coordinates, and any generated figures or CSV files, will be saved in the output directory you specified in the notebook. 
2. Review the results. The generated outputs can be used for your downstream analysis. Refer to Figures 3D, 4, and 5 in [7] 
as examples of the visual and quantitative results that this pipeline can produce. 
Note: This pretrained model and workflow are optimized for images with characteristics similar to those described in section 
A2. Performance on significantly different image types may vary (Figure S4 in [7]). 
 
B4. Extracting morphological features to a CSV file 
Following instance segmentation by DeMemSeg, a custom Python script leveraging the OpenCV library processes the output 
JSON files to extract a comprehensive set of morphological parameters from each individual membrane contour. This script 
automates the entire feature extraction workflow, which consists of the following key actions: 
1. Decode masks: The script first reads the RLE (Run-Length Encoded) mask data for each detected object from the input 
JSON files. 
2. Quantify morphological features: From each decoded mask, it then calculates a comprehensive set of parameters. While 
our biological analysis in this study focused on perimeter and roundness, the full set of extracted features are as follows: 
a. Basic geometric properties: Area, perimeter, major axis length, and aspect ratio. 
b. Derived shape metrics: Roundness and compactness, which collectively describe the form of the membrane. 
c. Advanced shape descriptors: A set of seven translation-, rotation-, and scale-invariant Hu moments, along with Fourier 
descriptors to characterize the boundary in detail. 
d. Positional and intensity data: The x, y coordinates of the centroid and the mean pixel intensity within the segmented 
region. 
 
3. Compile data: Finally, the script aggregates the quantitative data from all detected objects into a single, well-structured 
CSV file, with each row corresponding to a single membrane, ready for downstream statistical analysis. 
The full Python script used for this feature extraction, detailing all calculated parameters, is publicly available on our GitHub 
repository to ensure full reproducibility of our analysis pipeline: (https://github.com/MolCellBiol-tsukuba/DeMemSeg-
train/blob/main/script/mmdetection_psm.py). 
 
Result interpretation 
 
The primary output of the DeMemSeg pipeline is a set of instance segmentation masks, typically saved as image files or 
within a JSON file, for each analyzed cell. Each mask delineates an individual prospore membrane. Successful segmentation 
is characterized by smooth, continuous boundaries that accurately outline the fluorescently labeled membrane structures, as 
seen in the examples in Figure 4. 
The downstream analysis scripts generate quantitative morphological data for each segmented PSM, including its length 
(perimeter) and roundness. These parameters can be interpreted to classify the developmental stage and morphology of the 
PSMs: 
1. Early/dot stage: Characterized by a short perimeter and intermediate-to-high roundness. 
2. Horseshoe/elongating stage: Characterized by a long perimeter and low roundness values. 
3. Mature/sphere stage: Characterized by a moderately long perimeter and a roundness value approaching 1.0, indicating a 
spherical shape (Figure 5). 
The power of this protocol lies in comparing the distribution of these morphological parameters between different 
experimental conditions, such as wild type (WT) versus a mutant strain (Figure 4). For example, in our validation study 
using the gip1Δ mutant, we used this comparative analysis to draw biological conclusions. By plotting PSM length vs. 
roundness for both WT and gip1Δ populations (Figure 5), a clear shift in the data distribution becomes apparent. The gip1Δ 
mutant population shows a scarcity of data points in the elongating stage region (long perimeter, low roundness), which can 
be interpreted as a quantitative indicator of a membrane elongation defect. Furthermore, the mutant's failure to populate the 
mature/sphere stage region (roundness near 1.0) signifies an impairment in the final closure and maturation steps. By 

https://github.com/MolCellBiol-tsukuba/DeMemSeg-train/blob/main/script/mmdetection_psm.py
https://github.com/MolCellBiol-tsukuba/DeMemSeg-train/blob/main/script/mmdetection_psm.py
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interpreting these shifts in the morphological landscape, researchers can quantitatively characterize the effects of genetic 
mutations or experimental treatments on membrane dynamics. 
 

 
 
Figure 4. DeMemSeg accurately segments prospore membranes in both wild-type and mutant cells. Representative 
maximum intensity projection (MIP) images are shown for wild-type (WT; top row) and gip1Δ (bottom row) cells expressing 
the prospore membrane marker mCherry-Spo2051–91 shown in gray scale color. The colored overlays represent the individual 
prospore membrane (PSM) instances as predicted by the DeMemSeg model. Scale bar, 5 μm. 
 

 
 
Figure 5. DeMemSeg provides quantitative measurements of prospore membrane (PSM) morphology that are 
comparable to manual annotation. Scatterplots comparing PSM roundness vs. length for wild-type (WT; left panels) and 
gip1∆ mutant (right panels) cells. The top row shows the results from manual annotation, while the bottom row shows the 
results from the automated DeMemSeg pipeline. Data points are colored by time (in minutes) after sporulation induction. 
For the gip1∆ column, WT data is also presented as gray points for comparison. The marginal density plots illustrate the 
overall distribution of PSM length (top) and roundness (right) for each condition. 
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Validation of protocol 
 
This protocol and its core components have been used and validated in the following research article: 
• Taguchi et al. [7]. Deep learning-based segmentation of 2D projection-derived overlapping prospore membrane in yeast. 

Cell Struct Funct. 
The robustness and reliability of this protocol are demonstrated by several key findings presented in the research article. 
Following systematic optimization, the final DeMemSeg model achieved strong quantitative performance metrics, including 
a segm_mAP of 0.670 and a segm_mAP_75 of 0.786, with visual validation confirming high individual IoU scores for 
representative instances (Figure 3 in [7]). Furthermore, the protocol's output was directly compared against the gold standard 
of manual expert annotation. This comparison revealed no statistically significant differences between morphological 
measurements (PSM length and roundness) derived from DeMemSeg’s automated segmentation and those from manual 
annotation for both WT and gip1∆ mutant cells (Figure 5B in [7]). Finally, the protocol's practical utility and generalization 
capabilities were confirmed by its successful application to two types of unseen data: dynamic time-lapse image sequences 
(Figure 4 in [7]) and the morphologically distinct gip1∆ mutant, which was not part of the training data. The ability to 
quantitatively distinguish the mutant phenotype from the WT population (Figure 5) confirms that the protocol produces 
reliable and biologically meaningful results. 
 
 

General notes and troubleshooting 
 
General notes 
 
1. Applicability and adaptability of the workflow: This protocol is modular. The pretrained DeMemSeg model can be directly 
applied to segment PSMs from images acquired on different microscope systems, provided the input images are first 
processed into the required single-cell format. To achieve this, users would need to follow the initial steps of the pipeline: 
train their own custom CellPose model tailored to their specific imaging data to perform whole-cell segmentation, and then 
use it to generate the cropped, single-cell extract_image files (as detailed in steps A3.1–A3.2). Once these standardized input 
images are prepared, the PSM segmentation part of the workflow (section B) can be run directly. Furthermore, the entire 
protocol detailed in section A serves as a general framework that can be adapted to train new models for segmenting other 
challenging, overlapping subcellular structures in various cell types. 
2. Balancing annotation effort and model performance: Manual annotation is the most time-consuming step in this protocol. 
Our optimization results (Figure 3A in [7]) can serve as a guideline for balancing annotation effort against desired model 
accuracy. While performance generally improves with more data, we found that a substantial level of performance 
(segm_mAP > 0.65) was achieved with approximately 3,500 annotated PSM instances (50% of our full dataset). Researchers 
adapting this protocol for new tasks can use this as a benchmark to estimate the amount of annotation required to achieve a 
robust initial model. 
3. Key sources of variability: The primary source of variability that can affect model performance is the consistency of 
manual annotation. Subtle differences in how boundaries are traced, especially between different annotators, can introduce 
noise into the training data. To minimize this, we recommend that a single person annotates the entire dataset if possible, or 
that a very clear, shared annotation guideline is established and followed by all annotators. A second source of variability is 
image quality; significant fluctuations in signal-to-noise ratio, illumination, or focus across the dataset can impact the 
performance of both the CellPose and DeMemSeg models. Maintaining consistent imaging conditions is highly 
recommended. 
 
Troubleshooting 
 
Problem 1: The model generates false positives by segmenting prospore membranes in cells adjacent to the central target 
cell. 
Possible cause: This issue typically arises if the model is trained on, or asked to perform inference on, images that contain 
more than one cell. Deep learning models analyze all the visual information present in an input image. The crop_image 
generated in the initial cropping step is a simple square cut-out and may still contain fragments of neighboring cells. If the 
model sees these fragments, it may correctly identify them as PSM, leading to segmentations outside the cell of interest, 
which are considered false positives in the context of single-cell analysis. 
Solution: The solution is to use the cell-extracted image for both training and inference. As detailed in step A3.2, the cell-



 

 

Cite as: Taguchi, S. et al. (2025). Detailed Protocol for Segmentation and Quantification of Overlapping Prospore 
Membranes using DeMemSeg. Bio-protocol 15(23): e5520. DOI: 10.21769/BioProtoc.5520 

15 

Published: Dec 20, 2025 

extracted image is created by applying the CellPose-generated whole-cell mask to the crop_image. This process effectively 
erases all visual information outside the single, central target cell. By training the model exclusively on these "cleaned" 
single-cell images, you teach it to focus only on the structures within the correct cell boundary. Consistently using 
extract_image files for both training and final analysis is a critical step to prevent this type of false positive detection. 
 
Problem 2: A single, identical PSM is detected multiple times, resulting in over-detection with several overlapping masks 
for the same object. This can be more common when lowering the prediction score threshold to capture faint objects. 
Possible cause: Deep learning models assign a "prediction score" to every potential object they find. To obtain the final 
results, we set a score threshold; predictions above this threshold are kept, while those below are discarded. If this threshold 
is set low, the model might keep several slightly different but highly overlapping predictions for the same object, all of 
which have scores above the low threshold. This results in the over-detection of a single PSM. 
Solution: The most direct solution is to leverage biological context by setting the maximum number of instances to detect 
per image (max_per_img parameter). Since a single sporulating yeast cell produces a maximum of four spores, and thus 
four PSMs, we can set this parameter to 4. This instructs the model to "No matter how many potential objects you find in 
this image, only return the top 4 with the highest prediction scores." This effectively filters out lower-scoring duplicate 
detections and prevents biologically impossible outcomes. This parameter is configured during the inference step. 
 
Problem 3: When two PSMs are heavily overlapping, the model fails to detect one of them, segmenting only the one with 
the higher prediction score. 
Possible cause: This problem is often caused by a post-processing step called non-maximum suppression (NMS). NMS is 
essential for cleaning up redundant predictions. It works by comparing the intersection over union (IoU) of any two predicted 
masks. If the IoU value is above a set threshold, NMS assumes the two predictions are just duplicates of the same object 
and discards the one with the lower prediction score. The default NMS IoU threshold in the MMdetection framework is 0.5. 
However, two real, distinct PSMs can be so close that their masks overlap by more than 50% (IoU > 0.5). In this case, the 
default NMS setting will incorrectly treat them as duplicates and suppress one, leading to an under-detection. 
Solution: The solution is to increase the NMS IoU threshold to a value that is higher than the typical IoU of two distinct but 
heavily overlapping PSMs in your dataset. By raising the threshold (in our case, to 0.8), we are telling the algorithm to "Only 
consider two predictions to be duplicates if they are extremely similar (more than 80% overlap)." This adjustment allows 
the model to correctly identify two distinct PSMs that might have, for example, 60% or 70% overlap as separate instances. 
This is a critical parameter to tune using a validation dataset, especially when working with objects that are known to be 
densely packed or overlapping. 
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