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Abstract

Genome-walking protocols have been extensively used to clone unknown genomic sequences next to known DNAs. Existing
genome-walking protocols need further improvement in methodological specificity or operation. Here, we describe a novel
genome-walking protocol based on fusion primer—driven racket PCR (FPR-PCR). FPR-PCR involves four sequence-specific
oligos (SSO), SSO1, SSO2, SSO3, and SSO4, which are sequentially chosen from known DNA in the direction 5’—3’. The
fusion primer, mediating primary FPR-PCR, is generated by attaching SSO3 to the 5’ end of SSO1. The SSO3 encourages
the target DNA of primary PCR to form a racket-like structure by mediating intra-strand annealing. SSO2 and SSO4 are
directly used as sequence-specific primers (SSP) in secondary FPR-PCR, which selectively amplifies this racket-like DNA.
This protocol was verified by cloning several unknown genomic sequences. Compared to traditional PCRs, FPR-PCR offers
the advantages of higher specificity and fewer rounds, primarily attributed to the omission of arbitrary walking primers
typically required in traditional methods.

Key features

e This FPR-PCR protocol builds upon the method constructed by Pei et al. [1].

e The FPR-PCR protocol relies on a multi-functional fusion primer (FP) that mediates the primary amplification and the
formation of racket-like DNA.

e  The FPR-PCR comprises only two rounds of amplification reactions.

Keywords: Genome-walking PCR, Sequence-specific primer, Fusion primer, Partial annealing, Intra-strand annealing of
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Background

Genome walking (GW) is a molecular technique for identifying unknown genomic sequences next to known DNAs [2—4].
GW has been extensively used to obtain regulatory sites of genes, amplify non-conserved regions based on conserved DNAs,
identify T-DNA, discover new functional genes, or screen microbes [5—7]. Therefore, GW has made significant
contributions to the development of life sciences [8—10].

To date, there are many protocols for genome walking, mainly including genomic library methods, ligation-based PCRs,
and arbitrary PCRs [11-14]. The genomic library method has been abandoned due to its time-consuming nature [15]. The
ligation-based PCRs are also showing a tendency to be phased out, as they require pretreatment of the genomic plate prior
to PCR [16-19]. In contrast, arbitrary PCRs directly mediate walking by randomly annealing a walking primer to the
unknown flank; in general, the target DNA is obtained after two to three nested amplifications [20-23]. Therefore, arbitrary
PCRs are a more rapid and straightforward approach. However, existing arbitrary PCRs typically realize GW by the
differential amplification between target DNA and non-target DNA. Obviously, non-target background arising from walking
primer challenges these PCRs [24-26].

Herein, we propose an efficient but specific genome-walking protocol, fusion primer—driven racket PCR (FPR-PCR). This
method utilizes a fusion primer (FP) to mediate the target amplicon of primary FPR-PCR to form a racket-like structure;
then, a secondary PCR, driven by a sequence-specific primer (SSP) pair, selectively enriches this racket-like DNA. As a
result, non-target amplification is basically overcome in FPR-PCR. The FPR-PCR was validated by successfully acquiring
several unknown flanking genomic DNAs [27-29].

Materials and reagents

Biological materials

1. Genome of Levilactobacillus brevis [30-35], isolated with the TTANamp Bacteria DNA kit
Reagents

1. TTANamp Bacteria DNA kit (TTANGEN, catalog number: 4992448)
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2. 1x TE buffer (Sangon, catalog number: B548106)

3. LA Taq polymerase (Takara, catalog number: RRO2MA)

4. 6x Loading buffer (Takara, catalog number: 9156)

5. DiaSpin column DNA Gel Extraction kit (Sangon, catalog number: B110092)

6. DL 5,000 DNA marker (Takara, catalog number: 3428Q)

7. Agarose (Sangon, catalog number: A620014)

8. 0.5 M EDTA (Solarbio, catalog number: B540625)

9. GoldView I nucleic acid staining agent (10,000 x) (Solarbio, catalog number: G8140)
10. Tris (Solarbio, catalog number: T8060)

11. Boric acid (Solarbio, catalog number: B8110)

12. Oligos (Sangon)

gadC-FPa: TGTTTTCTTCTTGCTCT|IATGGTTATTCTCTGGGG

gadC-FPB: TGTTTTCTTCTTGCTCT|TCTCTGGGGATTGATTG

gadC-SSP2: TTGGGCGTTATAATTCCTGTTTTCTTCTTG

gadC-SSP4: GGAGCGGTAGTGTGTTAGTTGGGTT

Note: The two parts (SSOI and SSO3) in an FP are separated by a vertical line. The left part is SSO3, and the right part is
SSO1.

Solutions

1. 100 uM primer (see Recipes)
2. 10 uM primer (see Recipes)

3. 2.5% TBE buffer (see Recipes)
4. 0.5x TBE buffer (see Recipes)
5. 1.5% agarose gel (see Recipes)

Recipes

1. 100 pM primer

Reagent Final concentration Quantity or volume

Primer powder 100 uM n/a

1x TE buffer 1x Volume (uL) specified by the supplier
Total n/a Volume (uL) specified by the supplier

2.10 pM primer

Reagent Final concentration Quantity or volume
100 uM primer 10 uM 10 uL

Ultrapure water n/a 90 uL

Total n/a 100 pL

3. 2.5% TBE buffer (pH 8.3)

Reagent Final concentration Quantity or volume
Tris 225 mM 27¢g

Boric acid 225 mM 13.75 ¢

0.5M EDTA 5mM 10 mL

Ultrapure water n/a 950 mL

Total n/a 1,000 mL

4. 0.5x TBE buffer (pH 8.3)

Reagent Final concentration Quantity or volume
2.5 x TBE buffer 0.5x 200 mL

Ultrapure water n/a 800 mL

Total n/a 1,000 mL
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5. 1.5% agarose gel

Reagent Final concentration Quantity or volume

Agarose powder 1.5% 15¢g

0.5x TBE buffer 0.5% 100 mL

GoldView I nucleic acid staining agent (10,000x) 1x 10 uL

Total n/a 100 mL
Laboratory supplies

1. 0.2 mL PCR tubes (Kirgen, catalog number: KG2311)

2. 10 pL pipette tips (Sangon, catalog number: F600215)

3. 0.2 mL pipette tips (Sangon, catalog number: F600227)
4. 1 mL pipette tips (Sangon, catalog number: F630101)

5. 1.5 mL tubes (Labselect, catalog number: MCT-001-150)

Equipment

1. PCR cycler (Analtytikjena, model: Biometra TOne 96G PCR)
2. Electrophoresis apparatus (Beijing Liuyi, model: DYY-6C)

3. Gel imaging system (Bio-Rad, model: ChemiDoc XRS+)

4. Microcentrifuge (Tiangen, model: TGear)

Software and datasets

1. Oligo 7 software (Molecular Biology Insights, Inc., USA)
2. DNASTAR Lasergene software (DNASTAR, Inc., USA)

3. All data are available at https://www.frontiersin.org/articles/10.3389/fgene.2022.969840/full#supplementary-material

(access date, 10/18/2022)

Procedure

A. Primer design

1. Sequentially pick a set of four SSOs—SSO1, SSO2, SSO3, and SSO4—+from known DNA in the direction 5°—3' (Figure

).

Known DNA Unknown region

5 ey e— — ———— — — — ————

SSO1 SSO2 SSO3 SSO4
| (SSP2) | (SSP2)

v

===l P

Figure 1. Picking sequence-specific oligos (SSOs). The four SSOs are from known DNA. The fusion primer (FP) is made
by attaching SSO3 to the 5’ end of SSO1. FP performs primary FPR-PCR, while SSO2 and SSO4 are directly used as

sequence-specific primers (SSPs) to perform secondary FPR-PCR.
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Note: We suggest picking more than one SSO1 (SSO1a, SSOIp, ...), one SSO2, one SSO3, and one SSO4. Then, attach SSO3
to SSOIs to obtain FPs, so as to perform parallel FPR-PCRs for a walking experiment. In this study, two SSO1s (SSO1a
and SSO1p) were picked from each gene to make FPa and FPp, respectively.

Critical: SSOls can partially overlap or be completely different. For the former, the difference at the 3’ ends must not be
less than 3 nt. SSO1s are 17-21 nt with a melting temperature (Tm) of 50-55 °C. SSO3 is 17-18 nt with a Tm of 45-55 °C.
SSO2 or SSO4 is 25-30 nt with a Tm of 60—66 °C.

2. Open the Oligo 7 software and click File and Open to enter a known DNA sequence (Figure 2A).

A B

|£] Oligo 7 - gadC.seq

=) O'IgO 7 File Edit Analyze Search Select Change View Window Help
. . . B.EES HB Current Oligo Length... Ctrl+D
File Edit Search Change View Help - " a— =
[3; Sequence DNA to RNA
B New Sequence Ctrl+N Fie: gadC 52
. Search Ranges...
@d New Database Ctrl+Shift+N DblA Sephoncs [ Search Parameters...
e Sequence Length: 25| DB
= Open--- Ctrl+0 Reading Frame: “ e GC% of the Unknown Fragment...
Current Oligo Length: 17t ]
Open Recent > Position: 7 ] Reading Frame >
LDty exe] | | Rev. Translate Method L
Print Setupm Codon Table...
Print/Save Options...
Reset Original Defaults
Exit
|
1 10 20 30 40 50 60 70 80
ATGGTTATTCTCTGGGG
CARATTTATTTTGATGATEGTTATTCTCTGGGGATTGATTGC TCTGCAACAAAGAGGGACAAGTGTTACTGGTAAGATTGCAC)
GTTTAAATAARACTACTACCARTAAGAGACCCCTAACTAACGAGACGTTGTTTCTECCTETTCACAKTGACCATTCTAACGTET

Figure 2. Screenshots exhibiting how to design a sequence-specific oligo (SSO). (A) How to enter known sequence. (B)
How to define the length of SSO.

3. Click Change and Current Oligo Length to define SSO length (Figure 2B).

4. Click Analyze, Duplex Formation, and Current Oligo (Figure 3A) to assess SSO dimer (Figure 3B).

5. Click Analyze, Hairpin Formation, and Current Oligo (Figure 4A) to assess the SSO hairpin (Figure 4B).

Note: If the current SSO forms an obvious dimer(s) or hairpin(s) with a Tm > 40 °C (Figure 4C), pick a new SSO and then
assess it by repeating steps A3—AS5 until a satisfactory one is obtained.

6. Attach SSO3 to the 5° end of SSOI1 to form FP and assess the FP by repeating steps A3—AS.

Note: If the current FP is unsatisfactory, redesign SSO3 or SSOI to make a new one until a satisfactory FP is obtained.
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Figure 3. Screenshots exhibiting how to assess sequence-specific oligo (SSO) dimer. (A) How to find Duplex Formation

and Current Oligo. (B) Output SSO dimer(s).
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Figure 4. Screenshots exhibiting how to assess sequence-specific oligo (SSO) hairpin. (A) How to find Hairpin
Formation and Current Oligo. (B) Output SSO hairpin(s). (C) An unsatisfactory SSO selection.
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B. FPR-PCR amplification

The process of FPR-PCR is outlined in Figure 5.
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Figure 5. Outline of fusion primer (FP)-driven racket PCR. The FP’s 3'-part is SSO1, while the 5'-part is SSO3. Primary
PCR uses a single FP (FP = SSO3|SSO1), without involving a reverse primer, and the secondary PCR uses nested primers
SSO2 and SSO4.

Notes:

1. In primary PCR, the 25 °C cycle promotes FP to partially annealing to the unknown flank. The annealed FP synthesizes
a target DNA by extending toward the known region, thereby mediating walking.

2. One type of non-target DNA is also expected to be produced in primary FPR-PCR. In secondary FPR-PCR, however,
only the target DNA can be amplified because only this DNA has the binding sites for both SSO2 and SSO4.

1. Primary FPR-PCR
a. Mix primary FPR-PCR components into a PCR tube (Table 1).
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Table 1. Composition of primary FPR-PCR

Reagent Final concentration Volume (pL)
Genomic template Microbe, 0.2-2 ng/pL; Oryza sativa, 2-20 ng/pL. 1

LA Taq polymerase (5 U/uL) 0.05 U/uL 0.5

FP (10 uM) 0.2 uM 1

10x LA PCR buffer II (containing Mg?") ~ 1x 5

dNTP mixture (2.5 mM each) 0.4 mM each 8

Ultrapure water n/a 345

Total n/a 50

b. Fully mix the components using a pipette.
c. Centrifuge at 3,000x g for 10 s to gather the mixture.
d. Run PCR amplification (Table 2).

Table 2. Primary FPR-PCR cycling program

Step Temperature (°C) Duration (min) Cycle
Initial denaturation 94 2 1
Denaturation 94 0.5

Annealing 55 0.5 5
Extension 72 3

Denaturation 94 0.5

Annealing 25 0.5 1
Extension 72 3

Denaturation 94 0.5

Annealing 65 0.5 30
Extension 72 3

Final extension 72 10 1
Hold 4 forever 1

Note: The 25 °C annealing cycle enables PF to partially anneal to the unknown flank and then extend toward the known
region, thus mediating genome walking.

e. Take 1 pL of this PCR product as the template of the secondary FPR-PCR.
f. Store the rest of the product at -20 °C.

2. Secondary FPR-PCR
a. Mix secondary FPR-PCR components into a PCR tube (Table 3).

Table 3. Composition of secondary FPR-PCR

Reagent Final concentration Volume (pL)
Primary FPR-PCR product n/a 1

LA Taq polymerase (5 U/uL) 0.05 U/uL 0.5

SSP2 (10 pM) 0.2 uM 1

SSP4 (10 pM) 0.2 uM 1

10x LA PCR buffer II (containing Mg?") 1% 5

dNTP mixture (2.5 mM each) 0.4 mM each 8

Ultrapure water n/a 335

Total n/a 50

b. Fully mix the components.
c. Centrifuge at 3,000x g for 10 s to gather the mixture.
d. Run PCR amplification (Table 4).
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Table 4. Secondary FPR-PCR cycling program

Step Temperature (°C) Duration (min) Cycle
Initial denaturation 94 2 1
Denaturation 94 0.5

Annealing 60 0.5 25
Extension 72 3

Hold 4 forever 1

C. Gel electrophoresis

1. Mix 5 pL of FPR-PCR product and 1 pL of 6x loading buffer.

2. Transfer the mixture into a 1.5% agarose gel with 1% GoldView I nucleic acid staining agent.
3. Electrophorese at a voltage of 5 V/cm for 30 min.

4. Check the gel using the ChemiDoc XRS+ imaging system (Figure 6).

1000 bp —»- S

—

Figure 6. Mining the unknown flanking region of gadC. FPa and FPf denote the two parallel sets of FPR-PCRs. The
bands indicated by white arrowheads are the secondary FPR-PCR products. Lane P, primary PCR; lane S, secondary PCR;
lane M, TaKaRa DL5000 DNA marker. All four bands marked with arrows were sequenced and verified to be correct.

D. Purification of PCR product

1. Mix 40 pL of secondary FPR-PCR product and 8 pL of 6x loading buffer.

2. Transfer the mixture into a 1.5% agarose gel with 1x GoldView I nucleic acid staining agent.

3. Electrophorese at a voltage of 5 V/cm for 30 min.

4. Check the gel using the ChemiDoc XRS+ imaging system (Figure 6) and cut out target DNA band(s) with a knife.
5. Purify the DNA band(s) from the cut gel using the DiaSpin column DNA Gel Extraction kit.

E. DNA Sequencing

1. Mail the purified product(s) to Sangon Biotech Co., Ltd for sequencing.

Data analysis

1. Analyze sequencing data using the MegAlign software. Open the software and then click File and Enter Sequences (Figure
7A) to input DNA sequences to be analyzed (Figure 7B).
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Figure 7. Screenshots exhibiting how to input DNA sequences. (A) How to find Enter Sequences. (B) Input sequences.

2. Click Align and By Clustal W Method (Figure 8A) to get the result (Figure 8B).
Note: The experiment is considered successful if the SSO4-sided segment of the FPR-PCR product overlaps known DNA
(Figure 8B).
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Figure 8. Screenshots exhibiting how to analyze the input sequences. (A) How to find By Clustal W. (B) Final outcome.

Validation of protocol

This protocol or parts of it has been used and validated in the following research article:
e Peiectal. [1]. Fusion primer driven racket PCR: A novel tool for genome walking. Frontiers in Genetics (Figure 6).

General notes and troubleshooting

General notes

1. FPR-PCR is a universal genome-walking protocol.

2. FPR-PCR relies on the formation of racket-like DNA mediated by SSO3.

3. Unlike other arbitrary PCRs that require three rounds of nested amplification, FPR-PCR only requires two amplifications
because its secondary amplification is driven by an SSP pair.

4. Like other PCR genome-walking protocols, FPR-PCR also has the issue of multiple bands, but only the largest product

Cite as: Gu, Y. et al. (2025). Implementation of Fusion Primer-Driven Racket PCR Protocol for Genome Walking. 10
Bio-protocol 15(23): e5517. DOI: 10.21769/BioProtoc.5517




bl'o—protocol Published: Dec 05, 2025

needs to be considered.

5. Although the walking length is unpredictable, experimental data indicate that the typical amplicon size range observed in
the current FPR-PCR is 0.3—1.6 kb.

6. The band patterns of FPR-PCR are unpredictable, and there is no necessary connection between the band patterns between
primary and secondary PCRs. However, secondary PCR generally produces 1-2 DNA bands.

7. Running parallel FPR-PCR sets increases the success rate and efficiency of a walking cycle.

Troubleshooting

Problem 1: No distinct amplicon(s) appear in secondary FPR-PCR.

Possible causes: (i) A weak target amplification or a strong non-target amplification occurs in primary FPR-PCR; or (ii) the
SSO set may not be suitable.

Solutions: Appropriately dilute the primary FPR-PCR product, then use 1 pL of the dilution as the template of secondary
FPR-PCR. If no distinct amplicon(s) appear yet, redesign an SSO set.

Problem 2: A clear DNA band(s) is the non-target product.
Possible cause: The genome has sites homologous to the SSP(s) in other region(s).
Solution: Redesign an SSP set.

Problem 3: Direct sequencing of the FPR-PCR product is difficult.
Possible cause: There exists interference from non-target background.
Solution: Clone the FPR-PCR product and then sequence.

Problem 4: Smear DNA is observed.
Solution: Reduce cycle numbers if smear DNA appears.
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