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Abstract

DNA methylation is a crucial epigenetic modification that influences gene expression and plays a role in various biological
processes. High-throughput sequencing techniques, such as bisulfite sequencing (BS-seq) and enzymatic methyl sequencing
(EM-seq), enable genome-wide profiling of DNA methylation patterns with single-base resolution. In this protocol, we
present a bioinformatics pipeline for analyzing genome-wide DNA methylation. We outline the step-by-step process of the
essential analyses, including quality control using FASTQ for BS- and EM-seqs raw reads, read alignment with commonly
used aligners such as Bowtie2 and BS-Seeker2, DNA methylation calling to generate CGmap files, identification of
differentially methylated regions (DMRs) using tools including MethylC-analyzer and HOME, data visualization, and post-
alignment analyses. Compared to existing workflows, this pipeline integrates multiple steps into a single protocol, lowering
the technical barrier, improving reproducibility, and offering flexibility for both plant and animal methylome studies. To
illustrate the application of BS-seq and EM-seq, we demonstrate a case study on analyzing a mutant in Arabidopsis thaliana
with a mutation in the met/ gene, which encodes a DNA methyltransferase, and results in global CG hypomethylation and
altered gene regulation. This example highlights the biological insights that can be gained through systematic methylome
analysis. Our workflow is adaptable to any organism with a reference genome and provides a robust framework for
uncovering methylation-associated regulatory mechanisms. All scripts and detailed instructions are provided in GitHub
repository: https://github.com/Paoyangl.ab/Methylation_Analysis.

Key features

e  Provides a comprehensive pipeline for genome-wide DNA methylation analysis.
e  Step-by-step command line for DMR identification and post-analysis with visualization.

Keywords: Bisulfite sequencing, DNA methylation, Bioinformatics pipeline, BS-seq, EM-seq, NGS, DMR, Bioinformatics,
CGmap
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Overview of bioinformatics analysis of DNA methylation. An overview of this workflow, including the conversion and
sequencing processes of bisulfite sequencing (BS-seq) and enzymatic methyl sequencing (EM-seq), the downstream
bioinformatics workflow with example commands, and post-alignment analyses. It includes a comparison of three
differentially methylated region (DMR) identification tools, highlighting differences in methodology, feature support, and
DMR outputs.

Background

Epigenetics refers to alterations in gene expression that do not involve any change in the underlying DNA sequences. Such
modifications can be inherited and are often reversible [1]. Among all epigenetic factors, DNA methylation is the most
studied epigenetic regulator; it refers to the mechanism by which a methyl group is transferred to the C5 position of cytosine
to form 5-methylcytosine (SmC) via DNA methyltransferases (DNMTs). DNA methylation occurs in the contexts of
symmetric CG and CHG as well as asymmetric CHH sites, where H represents A, C, or T. In symmetric contexts (CG and
CHG), methylation can be maintained across DNA replication because the complementary strand provides a template for
restoring the methylation pattern. In contrast, methylation at asymmetric CHH sites lacks such symmetry and therefore
requires continuous de novo establishment by specific DNA methyltransferases, making it more dynamic and often
associated with transposon silencing.

DNA methylation can silence genes or transposable elements by changing the chromatin structure or interfering with
transcription factor binding [2]. Due to the importance of DNA methylation in biological processes, experimental approaches
have been developed to profile genome-wide DNA methylation. Genome-wide DNA methylation profiling is commonly
performed using next-generation sequencing (NGS) methods such as reduced-representation bisulfite sequencing (RRBS)
[3], whole-genome bisulfite sequencing (WGBS) [4], and enzymatic methyl sequencing (EM-seq) [5]. These NGS-based
approaches can determine the methylation status of DNA sequences at single-base resolution and measure DNA methylation
levels digitally. In bisulfite sequencing (BS) methods such as RRBS, BS-seq, or WGBS, the crucial step is sodium bisulfite
treatment, which converts unmethylated cytosine to uracil (and then to thymine during PCR), while 5SmC remains unchanged
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(Figure 1A). Such treatment can result in approximately 84%—-96% DNA degradation, causing a significant loss of DNA
material and induction of sequence bias, therefore affecting the accuracy of the analyses [6]. To improve from the bisulfite
treatment in BS-seq, EM-seq is performed to reduce DNA damage and produce higher-quality libraries for detecting SmC,
and it can generate comparable results using as little as 0.5 ng of input DNA compared with the 200 ng typically required
for BS-seq, representing approximately a 400-fold reduction in input material. It uses two sets of enzymatic reactions,
methylcytosine dioxygenase 2 (TET2) and T4-phage beta-glucosyltransferase (T4-BGT), to convert SmC and ShmC into
products that cannot be deaminated by apolipoprotein B mRNA editing enzyme catalytic subunit 3A (APOBEC3A). Then,
APOBEC3A deaminates unmodified C to generate U, which is eventually converted into T during PCR (Figure 1A) before
the final library is sequenced. Compared to BS-seq, EM-seq offers a higher yield and better genome coverage with fewer
PCR cycles required [7]. Unlike bisulfite libraries, EM-seq libraries do not exhibit biased AT-rich, GC-poor sequence
representation due to the absence of bisulfite treatment—induced DNA damage [5]. Moreover, low-input EM-seq libraries
provide similar results to high-input libraries; for instance, a 0.5 ng input of EM-seq covers more CpGs (regions of DNA
where a cytosine is followed by a guanine) than the 200 ng input used in BS-seq, highlighting the higher sensitivity of EM-
seq [5].

Profiling genome-wide DNA methylation can be computationally intensive [8,9]. The general workflow for such
bioinformatics analysis usually includes assessment of read quality, removal of duplicated reads, alignment of reads,
quantification of DNA methylation levels, identification of differentially methylated regions (DMRs), visualization of the
methylome, and other post-alignment analyses (Figure 1B). Each step involves handling large sequencing datasets, often
tens to hundreds of gigabytes per sample, which requires substantial computational resources. Alignment of bisulfite-treated
reads is particularly demanding due to reduced sequence complexity, and parallel computing is often necessary to achieve
reasonable runtimes. Memory usage ranges from 8 to 16 GB for small genomes such as Arabidopsis thaliana, but analyses
of mammalian WGBS typically require more. Disk space is also a major consideration, with at least 2 TB of available
storage being advisable for medium-scale projects.
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Figure 1. DNA methylation and bioinformatics pipelines overview. (A) Library construction of the enzymatic methyl
sequencing (EM-seq) and bisulfite sequencing (BS-seq). Created using BioRender (http://biorender.com/). (B) Workflow

of bioinformatics pipelines for DNA methylation analysis. The blue color represents the input data, while the green color is
the output. Red boxes are the steps for analysis, and the suggested tools are listed above the box.

Read alignment
Aligning reads to the reference genome is a critical first step in identifying methylated DNA sites from DNA methylation
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sequencing data. Commonly used bisulfite-read aligners can carry it out with two types of algorithms: wild-card aligners
[10] and three-letter aligners [11]. Wild-card aligners, such as BSMAP [12], replace Cs in the reference genome with the
wild-card letter Y, which can match both Cs and Ts in the bisulfite-converted reads. This method offers higher genomic
coverage, but can also introduce a bias toward higher methylation levels since it reduces the ability to distinguish between
truly methylated cytosines (retained as C) and unmethylated cytosines that have been converted to T. As a result, reads
containing Ts may be misaligned to C positions in the reference, leading to an overestimation of methylated sites [11]. On
the other hand, three-letter aligners, such as Bismark [13], BS-Seeker2 [14], and BS Seeker3 [15], have higher mapping
accuracy but slightly lower coverage compared to the wild-card aligners [11], as they convert all Cs into Ts in the reads for
both strands of the sequence, resulting in lower mapping complexity. In general, Bismark is more accurate than BSMAP but
its mapping rate and accuracy may decrease with high read error rates in longer reads [16]. BS-Seeker2 is more capable of
mapping reads from problematic libraries [14], and is only minimally impacted by read error rates [16]. Overall, among
these tools, BSMAP offers the fastest alignment speed and minimal memory usage, while BS-Seeker2 provides the highest
mapping accuracy [17]. Also, BS-Seeker3 [15] is an updated version of BS-Seeker2 that enhances alignment accuracy and
mappability, while reducing computational time. Common issues during read alignment, like low conversion rate (<98%),
may affect accurate cytosine calling and lead to underestimated conversion efficiency. Removing low-quality reads using
quality control tools before proceeding can avoid such potential problems. Aligners output the alignments as BAM or SAM
files [18] and methylation calling results of each C base as CGmap files [19]; each row contains CpG site information,
including chromosome, strand, genomic position, sequence context (CG, CHG, or CHH), dinucleotide context, methylation
level, and read counts (Figure 2).

Cytosine methylation—level information from CGmap files can be utilized for identifying DMRs. These refer to genomic
regions with significantly different levels of DNA methylation between two groups of methylomes—complete sets of DNA
methylation patterns across the genome of an organism, cell type, or condition (e.g., experimental and control). The locations
of DMRs may be further linked to specific, biologically meaningful features, such as promoters, genes, CpG islands, or
other user-defined regions [18,19]. In general, CG sites within promoters often show consistent hypomethylation across
biological replicates, correlating with transcriptional activity, whereas intergenic CHH sites are more variable and context-
dependent. Additionally, individual variation and potential bias introduced by bisulfite sequencing may contribute to subtle
differences between biological replicates, which therefore share similar but not identical methylomes (methylation profiles).
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Figure 2. Example of a CGmap file generated with the BS-seeker2 call methylation script. The figure displays a
screenshot of the ten rows from the “wt_r1.CGmap.gz” file.

Differential methylation region (DMR) identification

Several tools have been developed for DMR detection. Here, we highlight three popular ones, HOME [20], MethylC-
analyzer [21], and Bicycle [22] (Table 1), each based on different approaches. Machine learning methods make few
distributional assumptions and can capture nonlinear patterns. By implementing the machine learning algorithm, HOME
utilizes a trained support vector machine (SVM) model to score each cytosine by specific features computed by weighted
logistic regression using methylation level differences and p-values between two groups. The tool groups cytosines into
DMRs based on scores and distances to their neighboring cytosines [20]. The prebuilt SVM model in HOME has primarily
been designed for analyzing mammalian (mainly human) DNA methylation data; therefore, it incorporates assumptions that
may not account for the unique genetic regulation in nonmammalian species [23]. DMRs found by HOME are predicted by
a precise delineation of the boundaries, and the lengths of the DMRs can vary widely.

Statistical DMR identification tools, such as the MethylC-analyzer, identify DMRs by comparing the average methylation
levels (A methylation) of the genomic regions between the two groups. A larger difference (e.g., >10%) suggests a more
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substantial shift in epigenetic state. It also offers users a choice between three statistical methods, the Student’s t-test, the
Kolmogorov—Smirnov test, and the Mann—Whitney U test, for detecting DMRs with significant differences [21] that reflect
that the variation is consistent across replicates, instead of occurring by chance. These statistical methods apply classical
hypothesis tests to predefined regions or windows, offering simplicity and speed but inheriting test assumptions (e.g.,
approximate normality, independent observations) [24] that may be affected when sample sizes are small [25]. Additionally,
although users can customize the length of DMRs in MethylC-analyzer, fixed-length regions may still miss irregular DMR
boundaries.

As a model-based DMR-finding tool, Bicycle compares methylation levels of user-defined regions between two groups and
identifies DMRs using the likelihood ratio test based on beta-binomial models with considerations for sensitivity and
specificity [22]. Using beta-binomial models has been claimed to decrease the false-positive rate in DMR identification. In
brief, tool selection can be based on data type and analysis requirements, as different tools employ different approaches to
define DMRs with diverse lengths and characteristics (see Table 1 for an overview of these tools).

Table 1. Comparison of three DMR tools

Feature/tool HOME MethylC-analyzer Bicycle
Version 1.0.0 - 1.8.2
Language Python, R Python, R java
Environment CLl/ CLI/Docker CLI
Available context CG, CHG, CHH CG, CHG, CHH CG, CHG, CHH
ight logisti t t’s t-test, Kol —

. Weig 'e d ogistic S ugen 5 Hesh 0 mogo.rov Likelihood ratio of beta-

Testing method regression, support vector Smirnov test, Mann—Whitney . .
. binomial models
machine U test

-defi DMR

User-defined not available available available

length

CLI: command line interface, GUI: graphical user interface

Data visualization

After the reads are aligned, methylome data can be visualized by Integrative Genomic Viewer (IGV) [26] or the UCSC
Genome Browser [27]. Users can customize the tracks on both the IGV and UCSC Genome Browser for a better
understanding of the global DNA methylation pattern and compare it with other genome features ranging from single-
nucleotide to megabase scales. IGV is a user-friendly desktop application that allows users to visualize methylation sites on
the genome easily by importing files such as wiggle (WIG) files [27], a text-based format file that stores quantitative genomic
data, such as methylation levels or read coverage, across genomic coordinates for efficient visualization. With IGV, we can
directly view the methylation levels of identified DMRs and explore the adjacent genomic region that may be the potential
regulatory targets of identified DMRs.

Post-alignment analyses

Post-alignment analyses aim to associate genomic regions with identified DMRs and explore the roles of these DMRs in
genomic regulatory mechanisms, where various toolkits can be applied to such analyses. The R package methylKit [28] can
identify DMR proportions in various genetic elements, such as promoters, exons, or enhancers. MethGO [29] provides
several modules for analyzing the correlation between methylation level and genomic features, including transcription
factor-binding sites (TFBSs). MethylC-analyzer [21] provides an easy-to-use pipeline following the DMR identification step
and includes several common analyses, such as enrichment analysis and metagene analysis. Enrichment analysis can assess
the preferential localization of DMRs within genomic features across the genome, and metagene analysis is able to show the
distribution of methylation levels along the gene body and adjacent regions. MeH is another useful tool that estimates
methylation heterogeneity within a population of cells and allows investigation of intra-sample methylation dynamics at
specific genomic loci [30].

Software and datasets

All scripts, examples, and software information (Table 2) are provided in the README at our GitHub repository:
https://github.com/Paoyangl ab/Methylation_Analysis.
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Table 2. Required software tools, datasets, and resources used in this pipeline.

Software/dataset/resource Version  Date Access Dependencies
SRA Toolkit [31] v3.0.5 May 9, 2023 Open access

FastQC [32] v0.12.0 March 1, 2023 Open access

TrimGalore [33] v0.6.10 Feb 2, 2023 Open access

Bowtie2 [34] v2.26 August 24, 2015 Open access C/C++ libraries
BS-Seeker2 [14] v2.1.8 October 31, 2018 Open access Python > 2.7
HOME v1.0.0 [20] v1.0.0 February 4, 2019 Open access

MethylC-analyzer [21] - January 6, 2023 Open access Docker > v20.10
Bicycle [22] v1.8.2 April 25, 2020 Open access

IGV Desktop [26] v2.16.0 April 19, 2023 Open access

GSE122394 [35] - November 20,2019  Open access

Genome-wide DNA methylation dataset

To demonstrate the methylation analysis pipeline, we downloaded and processed Arabidopsis thaliana (GSE122394) BS-
seq datasets [35], including wild-type (wt) strains as controls and met/ mutant strains. The met/ mutants lack functional
DNA methyltransferase 1 (MET1), which is primarily responsible for maintaining CG methylation [36]. Each group
contained three biological replicates.

Data for project GSE122394 are available on Gene Expression Omnibus (GEO) and can be accessed using the provided
accession codes. The raw reads for each sample are stored in the Sequence Read Archive (SRA) listed in the GEO. To obtain
the data, you can use SRAToolkit [33] to download the file using prefetch and then convert it into the FASTQ format (.fastq)
for analysis by fast-dump. A FASTQ file is a text-based format that stores raw sequencing reads along with their
corresponding base quality scores from high-throughput sequencing experiments.

Note: fasterq-dump is faster by using multiple threads but requires substantial temporary disk space (approximately 3—4
times the size of the SRA file).

prefetch SRR8180314 ## download SRA data
fast-dump SRR8180314 ## transfer into fastqg file
mv SRR8180314.fastqg wt rl.fastqg ## rename the file

# Convert SRA file into FASTQ using fasterg-dump (multi-threaded, more efficient)
# fasterg-dump SRR8180314 --split-files -e 8 -t ./tmp

Hardware requirements

We recommend a workstation with 8-16 CPU cores, 32—-64 GB RAM, and at least 1.5 TB of storage. Raw FASTQ files of
Arabidopsis typically require 80—120 GB per sample, with BAM and CGmap outputs adding ~40—-70 GB each. A dataset of
six samples usually needs ~1 TB in total, but allocating >2 TB (preferably SSD) ensures smooth analysis.

Procedure

A. Processing methylomes

To provide useful guidance, a bioinformatics pipeline is introduced below, and the tools used in the protocol are listed in
the materials section. In the following demonstration, BS-Seeker? is used.

1. Quality control for methyl-seq reads

a. The methyl-seq reads should undergo quality control (QC) to remove low-quality reads and duplicate sequences generated
by PCR amplification and adapter sequences. Recommended tools include FastQC [32] for quality assessment, BS-Seeker2
[14] for duplicate removal, and TrimGalore [33] for reads and adapter trimming. The cutoff for calling low-quality reads is
usually set at a Phred score below 20 or 30 [37], which corresponds to an expected base call accuracy of 99%—-99.9%.
FastQC generates QC reports wt_rl_fastqc.html and wt_r1_fastqc.zip for checking read quality.

# quality control
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fastgc wt _rl.fastg

b. Based on the report, the duplicated reads are removed by the FilterReads.py from BS-Seeker2, and the adapter and low-
quality reads are trimmed by TrimGalore with the new QC report for double-checking. The cleaned and de-duplicated
FASTQ files wt_rl_rmdup_trimmed.fq are then obtained for the following analysis.

Note: “-1” specifies the input FASTQ and “-0” is for output FASTQ name. “--fastqc_args” set up the directory of QC
report.

# remove duplicate

./BSseeker2/FilterReads.py -i wt rl.fastg -o wt rl rmdup.fastg > FilterReads.log
# remove adapter

./TrimGalore/trim galore --fastqc args "--outdir ./gc_trimming" wt rl rmdup.fastqg

2. Alignments of methyl-seq reads

a. Download the Arabidopsis thaliana TAIR10 reference genome for the aligner.

Note: The reference genome can be downloaded from iGenomes
(hitps://support.illumina.com/sequencing/sequencing_software/igenome.html) [38], which offers a collection of reference

sequences and annotation files for commonly studied organisms. In this case, the path to downloaded reference genome
is: ./Arabidopsis_thaliana/NCBI/TAIR10/Sequence/WholeGenomeFasta/genome.fa

# download the reference genome

wget

https://s3.amazonaws.com/igenomes.illumina.com/Arabidopsis_ thaliana/NCBI/TAIR10/Ar
abidopsis_ thaliana NCBI TAIR10.tar.gz

tar -xzvf Arabidopsis thaliana NCBI TAIR10.tar.gz ##unzip the file

b. Use Bowtie2 to create a reference genome index file for BS-Seeker2 and save it as “BS2_bt2 Index”. This index generates
a set of binary files (e.g., .bt2) that encode the reference genome sequence and its suffix arrays, which are required by the
aligner to efficiently map bisulfite- or enzyme-treated reads to the genome.

Note: The “~f” specifies the FASTA file of the reference genome, and “-d” sets up the directory to save the output files. Path
to aligner “-p” will be required if the aligner is in a specific directory.

# Example commands using BS-Seeker2 (v2.1.8) with Bowtie2 (v2.2.6)
bs seeker2-build.py -f genome.fa --aligner=bowtie2 -d ./BS2 bt2 Index

c. Align trimmed reads of the wild-type replicate 1 to the reference genome using the align function and save it as a BAM
file named “wt_rl_align.bam”.
Note: “-1” specifies the input FASTQ file and “-0” the output bam file name.

bs seeker2-align.py -i wt rl rmdup trimmed.fastg -g genome.fa --aligner=bowtie2 -o
wt rl align.bam

3. Call methylation.

4. Run the call methylation script to process the aligned BAM file and generate cytosine-level methylation information as a
zip CGmap file. The CG map file includes the genomic position, sequence context (CG, CHG, CHH), and the calculated
methylation percentage at each site.

Note: The “-d” parameter is used to specify the index file of the reference genome.

bs_ seeker2-call methylation.py -1 wt_rl align.bam -o wt_rl.CGmap -d
/BS2 bt2 Index/genome.fa bowtie2

a. View the methylation call output (CGmap). The file with each row represents a single CpG site.

zless wt_rl.CGmap.gz
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Each CpG site contains the following information in a row: chromosome, nucleotide on Watson strand, position, context
(CG, CHG, or CHH), dinucleotide context, methylation level, number of methylated cytosines (#C), and the total number
of all cytosines (#C+T) (Figure 2)

5. Conversion rate

For methyl-seq (EM-seq and BS-seq) analysis, it is important to evaluate the conversion rate [39], which measures how
effectively bisulfite or enzyme treatment can convert unmethylated cytosines to uracil in DNA samples. This rate can be
estimated by comparing the treated genome with an unmethylated bacteriophage lambda genome used as a reference, thereby
calculating the percentage of cytosines that were successfully converted. The bacteriophage lambda genome is commonly
used as a reference because it is unmethylated under normal conditions, small in size (~48.5 kb), and easy to spike into DNA
samples during library preparation. Its lack of endogenous cytosine methylation provides a clean background, allowing
accurate estimation of bisulfite or enzymatic conversion efficiency without interference from pre-existing methylation
profile. The conversion rate is simply calculated by dividing the number of converted cytosines (#T) by the total number of
cytosines (#T+#C) and multiplying by 100, providing the percentage of successful bisulfite or enzymatic conversion.
Typically, a conversion rate of 95% or above is preferred because it shows more reliable and accurate results [40].

a. The first step for the conversion rate is the same as above, but changes the input reference genome to the lambda genome.

bs seeker2-build.py -f lambda genome.fa --aligner=bowtie2 -d ./BS2 lambda Index

bs seeker2-align.py -i wt rl rmdup.fastq -g lambda genome.fa --aligner=bowtie2 -o
wt rl lambda.bam -m 3 -d BS2 lambda Index

bs seeker2-call methylation.py -1i wt rl lambda.bam -0 wt rl lambda -d
BS2 lambda Index/genome.fa bowtie2/

b. The conversion rate is calculated by the R script with the formula:

Conversion rate = 100

— X
#T+#C

Note:  The  conversion rate script can be viewed or downloaded on the GitHub  page:
(https://github.com/beritlin/NGS_analyses/blob/main/DNA_Methylation_Analyses/coversion_rate.R) [41].

Rscript coversion rate.R wt rl lambda.CGmap.gz
# Output (example):

# Calculating bisulfite conversion rate

# Bisulfite conversion rate: 97.01493 %

In our example, the conversion rate for the wt rl methylome is 97.01%, which means that 97.01% of the unmethylated
cytosines in the DNA sample have been successfully converted to uracil.

B. DMR identification

Here, MethylC-analyzer is selected to demonstrate how to find DMRs from the aligned methylation data output as well as
HOME for results comparison. To prevent environmental conflicts, the docker image provided by the software is utilized.
Note: As different tools require specific environmental settings to run properly, using a docker image can prevent
environmental conflict issues.

1. Searching DMR

MethylC-analyzer

a. The command “DMR” is used along with the input “samples list.txt” file that lists all sample names, CGmap files
(wt_r1.CGmap.gz, wt_12.CGmap.gz, wt_r3.CGmap.gz, metl r1.CGmap.gz, metl r2.CGmap.gz, and metl r3.CGmap.gz,
in our case), and the description of each input sample (wt and met! in our case), as well as a “gene.gtf” file. The annotation
files for Arabidopsis thaliana in GTF format can be obtained from the UCSC Genome Browser
(https://hgdownload.soe.ucsc.edu/downloads.html); the file contains information about genomic features of genes, such as
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exons, introns, coding sequences, and untranslated regions (UTRs) [7]. By default, the minimum read depth for each CpG
site “-d” and the minimum number of qualified sites within each region “-q” are both set to four. The default region size for
DMR searching “-r”” is 500 base pairs (bp). To identify DMR, statistical significance is analyzed by Student’s t-test using a
default cutoff “-pvalue” of 0.05, and regions must also show an absolute average methylation difference “-dmrc” higher
than 10%. All these arguments can be adjusted by users.

Note: The text in the input file should be separated by a tab. “-a” and “-b” are the group names in the input text file.

# create input file

vim samples list.txt

# sample name \t file name \t group name
wtl wtl.CGmap.gz WT

wt2 wt2.CGmap.gz WT

wt3 wt3.CGmap.gz WT

metl Imetl 1.CGmap.gz metl
metl 2metl 2.CGmap.gz metl
metl 3metl 3.CGmap.gz metl

# run methylc-analyzer
docker run --rm -V S (pwd) : /app peiyulin/methylc:V1.0 python /MethylC-
analyzer/scripts/MethylC.py DMR samples list.txt gene.gtf /app/-a metl -b wt

b. There are three output files: DMR_CG_all 0.1.txt, DMR_CG_hyper 0.1.txt, and DMR_CG_hypo 0.1.txt. These consist
of all, hyper, and hypo DMRs with their locations, A methylation, and p-value between groups. Here, we found 3,282 DMRs
in CG methylation between the wt and met! groups. These DMRs are the genomic regions that show significantly lower
methylation levels when MET 1 is mutated, indicating that the disruption of this DNA methyltransferase leads to widespread
CG hypomethylation; this change may alter the epigenetic regulation of gene expression.

HOME

a. HOME requires the input file “sample_file.tsv” with the group name (e.g., wt and met/) in the first column and all CGmap
files for each group in the second column, separated by a tab. It can only analyze one specific context at a time during the
process. The minimum number of sites “-mc” within a region is set as four to match the MethylC-analyzer. By default, the
minimum size “-ml” of a DMR is 50 bp, and the minimum average difference “-d” in methylation required in a DMR is
10%. DMR detection is based on a machine learning framework that integrates weighted logistic regression and support
vector machine (SVM) classification. The classifier score cutoff “-sc¢” and pruning cutoff “-p” are both set to 0.1 by default.
The corresponding option is specified when using CGmap files generated from BS-Seeker2 directly to ensure compatibility.
Arguments can be modified by the users.

# create input file

vim sample file.tsv

# group name \t file name \t ..

wt wtl.CGmap.gz wt2.CGmap.gz wt3.CGmap.gz

metl metl 1.CGmap.gz metl 2.CGmap.gz metl 3.CGmap.gz

# run HOME

HOME-pairwise -t CG -i sample file.tsv -o ./-mc 4 --BSSeeker2

b. The output consists of DMR text files for each chromosome “HOME_DMRs_1.txt”, “HOME_DMRs_2.txt”, and so on.
In total, 16,185 hypomethylated CG DMRs were detected between the wt and met] samples.

2. Analyzing DMR

The results of DMR identification tools are compared and shown in Figure 3. In total, MethylC-analyzer discovered 3,282
DMRs in fixed regions of 500 bp, which were subsequently merged into 2,785 DMRs by combining contiguous DMRs (size
range from 500 to 14,500 bp) in order to avoid fragmentation and to better capture extended regions of differential
methylation. HOME identified 16,185 DMRs in regions of varying lengths, with the longest being 36,721 bp and the shortest
being 50 bp. HOME identified more DMRs and covered 94.5% of the DMRs found by MethylC-analyzer (Figure 3A).
Moreover, it can be observed that the DMRs identified by HOME are much wider and span a large region, even extending
across multiple genes (Figure 3B red box), and those small-sized DMRs tend to spread out in the intergenic regions (IGR)
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(Figure 3B yellow boxes). To sum up, HOME identifies more DMRs than MethylC-analyzer, while HOME is more sensitive
to the changes between two groups, and MethylC-analyzer may be more precise by pinpointing the smaller regions.

A B
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Figure 3. Differentially methylated regions (DMRs) found by MethylC-analyzer and HOME. (A) Venn diagram
showing the number of overlapping DMRs between HOME and MethylC-analyzer. The criteria for DMR identification
were a minimum of four cytosines within a DMR, a A methylation level cutoff = 0.1, and a p-value < 0.05. (B) Comparison
of identified DMRs between HOME and MethylC-analyzer in IGV. The cross-gene DMR is highlighted in red, and the
intergenic DMRs are in yellow.

C. Data visualization

1. Genome browser

a. Download and activate the IGV Desktop application according to the operating system (see General note 2). This
application supports operating systems including macOS, Windows, and Linux.

b. Select the reference genome from the dropdown list. Here, we chose 4. thaliana (TAIR10) as a reference genome.
Additional reference genomes can be downloaded by clicking More or loaded from the local path (in FASTA format).

c. Convert the file from the WIG file to the suggested track formats, BigWig [42] or TDF files, by running IGVtools (click
Tools > Run IGVtools).

Note: The BigWig file can be obtained by either MethylC-analyzer “metaplot” (see Section D2a) or deepTools
“bamCoverage” function from BAM file “-b” and generate output “-0” BIGWIG track file.

# deepTools
bamCoverage -b wt rl align.bam -o wt rl.bw

d. Select File > Load to load data into the track panel. Right-click the panel to adjust the graphic type or other settings.

e. Use the dropdown list and search box at the top panel to select the chromosome and region shown. Click +/- on the top
panel to zoom in/out. Clicking or dragging on the track of the chromosome also adjusts the region shown.

f. Click File > Save session or File > Save Image to save the visualization result (Figure 4A).

In our example, within the AT1G24938 locus (a transposable element gene), met! samples exhibit lower methylation levels
across all contexts compared to wt, with the largest reduction observed in the CG context. This observation is consistent
with MET1’s role in maintaining CG methylation (Figure 4B).
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Figure 4. Schematic for post-alignment analysis and visualization. (A) Interface of the IGV desktop on a Mac system.
The steps and operating areas are in red (see steps Cla—f). The main steps shown in the figure are as follows: 1) open IGV;
2) select the reference genome; 3) convert WIG to BigWig (Tools > Run IGVtools); 4) load tracks (File > Load from File)
and adjust tracks; 5) select the region of interest; 6) save session (File > Save session). (B) Screenshot for IGV. (C) Overview
of the post-alignment analyses. Analyses in the right panel (pink) are performed by the MethylC-analyzer, which requires a
CGmap and a genome annotation GTF file as input. Visualization by IGV is in the left panel (green). It allows the WIG file
from aligners, as well as BigWig and BED files from MethylC-analyzer.
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D. Post-alignment analyses

For better interpretation of methylation data, post-alignment analyses like enrichment analysis or metagene analysis are
commonly carried out to explain the methylation profiles. Enrichment analysis calculates the fold change in genomic region
enrichment in identified DMRs compared to the whole genome. Metagene analysis represents the average methylation level
along the gene body and adjacent regions at a normalized length. In this section, MethylC-analyzer is applied to perform
enrichment and metagene analyses.

Note: MethylC-analyzer provides an all-in-one process to perform multiple analyses for the same dataset in one command
to save running time.

1. Enrichment analysis

a. Use the “Fold_Enrichment” command to generate the enrichment result with the “samples_list.txt” file as in step Bla.
This module generates output files, including “CG_Fold Enrichment.pdf” and multiple BED files, such as
“CommonRegion_CG.txt.bed”. The BED format provides information like the positions of common methylated regions
across samples. The BED file can be visualized by using IGV.

docker run --rm -V S (pwd) : /app peiyulin/methylc:V1.0 python /MethylC-
analyzer/scripts/MethylC.py Fold Enrichment samples list.txt gene.gtf /app/-a metl
-b wt

DMRs exhibit a positive fold enrichment value in the IGR, suggesting a higher likelihood of DMRs being located in IGRs
(Figure 4C).

2. Metagene analysis

a. Use the “Metaplot” command to generate the Metaplot result. This module generates two types of metagene plots: one
represents the average methylation level in two groups (metaplot CG.pdf), and the other shows the difference between the
two groups (metaplot_delta CG.pdf). The former illustrates the methylation pattern along the gene body and adjacent region,
while the latter directly represents the difference in distribution between wt and met!. This module also generates BigWig
files (metl _r1_CG.bw) to record methylated C sites in metagene analysis, and these BigWig files can be visualized by IGV.

docker run --rm -v S (pwd) : /app peiyulin/methylc:V1.0 python /MethylC-
analyzer/scripts/MethylC.py Metaplot samples list.txt gene.gtf /app/-a metl -b mt

In our case, the wt samples exhibit a standard CG methylation pattern [7] with a lower methylation level at the transcription
start site (TSS) and transcription end site (TES). The met/ samples show a consistently low methylation level along the gene
body, reflecting the dysfunction of the methyltransferase (Figure 4C).

3. Differentially methylated genes (DMG) analysis
a. Use the “DMG” command to identify those genes or promoters containing DMRs. This module generates output files,
including txt files and bed files for the hypo- and hyper-DMRs and DMGs.

docker run --rm -v S (pwd) : /app peiyulin/methylc:V1.0 python /MethylC-
analyzer/scripts/MethylC.py DMG samples list.txt gene.gtf /app/-a metl -b wt

The number of DMRs found in the previous step and DMGs are shown in a bar chart in Figure 4C. DMRs in promoters are
typically associated with transcriptional activation or repression, while those in gene bodies relate to transcriptional stability
and splicing. Similar numbers in both DMGs suggest that methylation changes have no preference between the promoter or
the gene body.
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Validation of protocol

This protocol has been used and validated in several plant and human studies. Approaches from read alignment to
methylation calling were applied in Hsieh et al. [43,44], Lin et al. [30], Hossain et al. [45], and Lu et al. [21]. The DMR
identification step was also used in Hsieh et al. [43,44] and Lin et al. [30] with different criteria.

This protocol (or parts of it) has been used and validated in the following research articles:

e Hsieh et al. [43]. Epigenetic factors direct synergistic and antagonistic regulation of transposable elements in
Arabidopsis. Plant Physiology (Figure 2E).

e Lin et al. [30]. Estimating genome-wide DNA methylation heterogeneity with methylation patterns. Epigenetics &
Chromatin (Figures 2, 3, and 4).

e Hsieh et al. [44]. Rice transformation treatments leave specific epigenome changes beyond tissue culture. Plant
Physiology.

e Lu et al. [21]. MethylC-analyzer: a comprehensive downstream pipeline for the analysis of genome-wide DNA
methylation. Botanical Studies.

General notes and troubleshooting

General notes

1. The UCSC Genome Browser provides web-based track hubs, which are convenient for users to quickly find and visualize
public genome-wide datasets. Users who are looking for more detailed genomic information on well-studied genomes (e.g.,
the human genome hg38) are recommended to use the UCSC Genome Browser for visualization.

2. In the comparison of different DMR identifiers, we only discussed the difference between HOME and MethylC-analyzer
since Bicycle requires its specific file format from its own pipeline. For a fair comparison, the regions of DMR require at
least four Cs when applying both tools.

Troubleshooting

Problem 1: Low conversion rate (below 98%).
Possible cause: Contamination may affect accurate cytosine calling, leading to underestimated conversion efficiency.
Solution: Remove low-quality reads using quality control tools (e.g., FastQC + Trim Galore) before data analysis.

Problem 2: Low genome coverage leads to biased results.
Possible cause: Insufficient sequencing depth or uneven read distribution across the genome.
Solution: Set a minimum coverage cutoff (e.g., depth > 4 or higher) during analysis to reduce noise and improve reliability.
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