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Abstract

Weighted gene co-expression network analysis (WGCNA) is widely used in transcriptomic studies to identify groups of
highly correlated genes, aiding in the understanding of disease mechanisms. Although numerous protocols exist for
constructing WGCNA networks from gene expression data, many focus on single datasets and do not address how to
compare module stability across conditions. Here, we present a protocol for constructing and comparing WGCNA modules
in paired tumor and normal datasets, enabling the identification of modules involved in both core biological processes and
those specifically related to cancer pathogenesis. By incorporating module preservation analysis, this approach allows
researchers to gain deeper insights into the molecular underpinnings of oral cancer, as well as other diseases. Overall, this
protocol provides a framework for module preservation analysis in paired datasets, enabling researchers to identify which
gene co-expression modules are conserved or disrupted between conditions, thereby advancing our understanding of disease-
specific vs. universal biological processes.

Key features

e Presents a step-by-step WGCNA protocol with module preservation and functional enrichment analysis [1,2] using
TCGA cancer data, demonstrating network differences between normal and tumor tissues.

e  Preprocesses gene expression data and conducts downstream analysis for constructed networks.

e Requires 2-3 h hands-on time and 8-12 h total computational time, depending on dataset size and permutation number
used for module preservation analysis.
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Overview of WGCNA and module preservation analysis in tumor and normal transcriptomic data

Background

Oral squamous cell cancer (OSCC) is a global public health issue, with prognosis closely linked to the stage of diagnosis.
Although the five-year survival rate for early-stage OSCC is about 82.5%, it declines to 54.7% for locally advanced disease
[3]. These statistics underscore the importance of identifying molecular pathways and key genes involved in OSCC
pathogenesis to improve early detection and develop effective targeted therapies. Network analysis, particularly through
weight gene co-expression network analysis (WGCNA) [1], has emerged as a powerful methodology for exploring complex
gene expression data [1,4-11]. Unlike standard differential expression analyses that focus on individual genes, WGCNA
identifies modules of highly correlated genes, providing insights into their underlying functional linkages and shared
biological pathways [12]. WGCNA can construct scale-free gene co-expression networks to screen clusters (modules) of
highly correlated genes, and the construction of modules is based on the inherent relationships between genes in the sample
set. While WGCNA analysis can be performed entirely within the R environment, visualization of the resulting networks
often benefits from specialized network visualization software. Cytoscape [13], an open-source platform for complex
network analysis and visualization, has become a standard tool for representing gene co-expression networks due to its
ability to handle large-scale biological networks and provide customizable visual representations of module structures and
gene interactions [14]. WGCNA has been applied to several cancer types [15,16], providing insights into the molecular
mechanisms underlying diseases. Manouchehri [17] used WGCNA to analyze gene expression data from prostate cancer
patients and identified six significant gene expression modules correlated with cancer progression. This study highlighted
the importance of population-specific studies in cancer research. Another study used WGCNA to identify 278 hub genes
associated with tumorigenesis in tuberculosis-associated lung cancer [18]. For oral cancer, many studies have applied
WGCNA to uncover potential prognostic makers [19], understand transcription dysregulation [20], and explore the
mechanism of chemoresistance in OSCC [21]. Though WGCNA provides valuable insights into cancer gene expression, it
also has some limitations, such as the need for large datasets and the complexity of interpreting co-expression networks.
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Module preservation analysis [2] enhances WGCNA by allowing researchers to assess the reproducibility and reliability of
gene co-expression modules across different datasets, conditions, or tissue types, providing greater confidence in the
biological interpretations drawn from the modules identified in a WGCNA analysis. In this protocol, we build upon previous
WGCNA frameworks by constructing and comparing gene co-expression networks derived from both OSCC tumor and
normal tissue samples. After identifying modules in each network, we apply module preservation analysis to determine
which modules are conserved in both tumor and normal conditions. We demonstrate how to export WGCNA results for
visualization in Cytoscape, enabling researchers to explore network topology and identify hub genes through interactive
visual analysis. Conserved modules may represent core biological processes common to both states, while modules unique
to either the tumor or normal network may highlight pathways directly relevant to OSCC pathogenesis. Previous tutorials
have primarily focused on applying WGCNA to single datasets. Here, we provide a comprehensive guide for performing
WGCNA and module preservation on paired tumor and normal datasets, offering a refined strategy to pinpoint functionally
relevant gene clusters, improve biological interpretation, and advance our understanding of oral cancer biology.

Equipment

1. Personal computer with Windows, macOS, or a Unix-based operating system
Note: For these analyses, we recommend a computer with at least 32 GB of RAM and a modern multi-core processor.

Software and datasets

. R software environment (> 4.4.0) (https://www.r-project.org/)

. RStudio integrated development environment (> 1.4.0) (https://rstudio.com/)

. WGCNA _1.73 (https://cran.r-project.org/web/packages/WGCNA/index.html)

. DESeq2 1.46.0 (https://bioconductor.org/packages/release/bioc/html/DESeq2.html)

. genefilter 1.88.0 [22] (https://www.bioconductor.org/packages/release/bioc/html/genefilter.html)

. tidyverse 2.0.0 (https://cran.r-project.org/web/packages/tidyverse/index.html)

. dendextend 1.19.0 (https://cran.r-project.org/web/packages/dendextend/index.html)

. gplots_3.2.0 (https://cran.r-project.org/web/packages/gplots/index.html)

. clusterProfiler 4.14.4 [23] (https://bioconductor.org/packages/release/bioc/html/clusterProfiler.html)

10. org.Hs.eg.db_3.20.0 (https://bioconductor.org/packages/release/data/annotation/html/org.Hs.eg.db.html). All gene
annotations were performed using the org.Hs.eg.db package (version 3.20.0), which is consistent with the GRCh38 human
genome assembly of the TCGA data

11. ggplot2_3.5.1 (https://cran.r-project.org/web/packages/ggplot2/index.html)

12. ggpubr_0.6.0 (https://cran.r-project.org/web/packages/ggpubr/index.html)

13. VennDiagram_1.7.3 ( https://cran.r-project.org/web/packages/VennDiagram/index.html)

14. dplyr_1.1.4 (https://cran.r-project.org/web/packages/dplyr/index.html)

15. GO.db_3.20.0 (https://bioconductor.org/packages/release/data/annotation/html/GO.db.html)

16. Code for WGCNA and preservation module analysis can be accessed through this GitHub link:
https://github.com/biocoms/WGCNA

17. Dataset

Data can be directly downloaded through the TCGA portal. The analysis used gene expression data from the GDC Data
Release v38.0, downloaded on October 18, 2023. The dataset is publicly available as a compressed file
(GeneExpression. zip) in the GitHub repository: https:/github.com/biocoms/WGCNA
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if (!require ("BiocManager", quietly = TRUE))
install.packages ("BiocManager")

BiocManager::install ("TCGAbiolinks")
TCGAbiolinks:::getProjectSummary ("TCGA-HNSC")

ge query <- GDCquery( project = "TCGA-HNSC",
data.category = "Transcriptome Profiling",
data.type = "Gene Expression Quantification")
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GDCdownload (ge_query)

output m query <- getResults (ge query)

normal sample <- output m query$sample.submitter id[output m query$sample type ==
"Solid Tissue Normal"]

tumor sample <- output m query$sample.submitter id[output m query$sample type ==
"Primary Tumor"]

ge data <-GDCprepare (ge query, summarizedExperiment = TRUE)

# Extracts the expression values

expression matrix <- assay(ge data)

expression_df <- as.data.frame (expression matrix)

expression df <- cbind(Gene = rownames (expression matrix), expression_df)

colnames (expression data) <- gsub("-.*$", "", colnames (expression data))

# Remove extra parts

# Subset the expression data to include only normal samples/tumor sample

normal expression data <- expression datal, colnames (expression data) %in%
normal samples]

tumor expression data <- expression datal, colnames (expression data) %in%
tumor samples]

write.csv(normal expression data, “OSCC_TCGA gene expression normal.csv)
write.csv (tumor expression data, “OSCC TCGA gene expression tumor.csv)

Based on the different purposes of research, we can manipulate the dataset by removing or filtering out some samples.

Caution: Troubleshooting and environment setup: this protocol was developed and tested using R version 4.4.0 or higher.
However, we recognize that users may have different R versions. Here, we provide solutions for various compatibility issues:
For R versions 4.2.x—4.3.x:

Most functions should work, but some package versions may differ. If you encounter issues:

1. For WGCNA installation:

For older R versions, use the archived WGCNA version

install.packages ("https://cran.r-project.org/src/contrib/Archive/WGCNA/WGCNA 1.72-
l.tar.gz", repos = NULL, type = "source")

2. For Bioconductor packages:

if (!requireNamespace ("BiocManager", quietly = TRUE))
install.packages ("BiocManager")
BiocManager::install (version = "3.17") # For R 4.3.x

oS}
=~
N
w

BiocManager::install (version = "3.16") # For

For R 4.2.0 (Windows): Due to package compatibility issues with the older R version, users may encounter installation
problems. Follow these steps:

1. Clean installation approach:

Remove any partially installed packages

remove.packages (c ("WGCNA", "htmlTable", "knitr", "xfun"))

Clear package cache

unlink (.libPaths () [1], recursive = TRUE)
dir.create(.libPaths () [1])

2. Use the compatibility script (recommended):
GitHub link: https://github.com/biocoms/WGCNA/blob/main/R_4.2.0_compatibility_script.R
3. Known issues and workarounds:
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If htmlTable fails, install from source with install.packages ("htmlTable", type = "source")
If the WGCNA function is not found, restart R after installation and explicitly load with 1ibrary (WGCNA)
For quotation mark issues, ensure you are using straight quotes, not curly quotes.

For R versions <4.2:
We strongly recommend upgrading to R 4.2 or higher. If an upgrade is not possible, use WGCNA version 1.70.3 or earlier.
Some visualization features may not be available.

Procedure
A. Install the necessary R packages

1. The required packages to run this pipeline can be installed from CRAN and Bioconductor repositories using the following
commands in an R terminal:

install.packages ("WGCNA", "tidyverse", "dendextend", "gplots", "ggplot2", "ggpubr",
"VennDiagram", "dplyr", "GO.db")

if (!requireNamespace ("BiocManager", quietly = TRUE))
install.packages ("BiocManager")
BiocManager::install (c("DESeg2", "genefilter", "clusterProfiler", "org.Hs.eg.db"))

2. Load necessary packages before running the analysis.

library ("WGCNA"™)
library ("tidyverse")
library ("dendextend")
library ("gplots")
library ("ggplot2")
library ("ggpubr")
library ("VennDiagram")
library ("dplyr")
library ("GO.db")
library ("DESeg2")
library("genefilter")
library("clusterProfiler")
library("org.Hs.eg.db")

B. Preprocess data
Before performing WGCNA, it is important to preprocess the data to ensure robust and meaningful results.

Critical: Batch effect considerations. Batch effects are a major source of technical variation in large RNA-seq datasets and
must be evaluated before WGCNA analysis. The Genomic Data Commons (GDC) explicitly states that they do not perform
batch effect corrections across samples, as they continuously accept new data and maintain frequent release cycles. Therefore,
users might want to assess and potentially correct for batch effects to avoid technical variations masking true biological
signals or leading to inaccurate conclusions [24]. For TCGA data, use principal component analysis (PCA) with tissue source
site (TSS) as a batch proxy. TSS information can be obtained from TCGA clinical data using the tissue_or_organ_of origin
variable. If primary components (PC1 or PC2) significantly associate with TSS rather than biological conditions, consider
batch correction using the ComBat (SVA package) method [25].

Caution: Avoid automatic batch correction without preserving biological variables, as this can remove true biological
signals. WGCNA is generally robust to minor batch effects, so correction may not always be necessary depending on your
research question.
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Since we will be comparing networks constructed from tumor and normal datasets, these two datasets should be processed
separately. The steps below illustrate how to load, normalize, and filter out the data before constructing co-expression
networks.

1. Load the data
Start by loading the tumor and normal gene expression datasets, ensuring each file contains genes as row names and samples
as columns.

tumor data<-read.csv ("GeneExpression/OSCC_TCGA gene expression 337.csv", row.names
= 1)

normal data<-read.csv("GeneExpression/OSCC_TCGA gene expression 32.csv", row.names
= 1)

Print the first 5 rows and 5 columns of tumor (Figure 1) and normal (Figure 2) datasets.

tumor_data[1:5, 1:5]

TCGA.4P.AA8) TCGA.BA.4074 TCGA.BA.5149 TCGA.BA.5151 TCGA.BA.5152

ENSG0000000003 1224 8046 3% 1546 5930
ENSG@0000000005 (% ] 0 0 0
ENSG@0000000419 1252 8073 3991 3290 2760
ENSGO0000000457 208 654 259 816 420
ENSGO0000000460 174 1500 564 630 483

Figure 1. Representative subset of the oral squamous cell cancer (OSCC) TCGA tumor expression matrix. The first
5 genes (rows, Ensembl IDs) and 5 samples (columns, TCGA IDs) are displayed with their corresponding raw expression
counts.

normal_data[1:5, 1:5]

TCGA.CV.6933.11 TCGA.CV.6934.11 TCGA.CV.6936.11 TCGA.CV.6938.11 TCGA.CV.6939.11

ENSG0@000000003 7883 12194 2630 2420 1602
ENSG00000000005 5 3 23 99 52
ENSG00000000419 1152 1826 1751 1790 723
ENSGO0000000457 685 812 364 952 405
ENSG0@000000460 68 212 219 307 42

Figure 2. Representative subset of the oral squamous cell cancer (OSCC) TCGA normal expression matrix. The first
5 genes (rows, Ensembl IDs) and 5 samples (columns, TCGA IDs) are displayed with their corresponding raw expression
counts.

2. Normalize the data

Gene expression data often requires normalization to account for differences in sequencing depth and other technical
variables. We use the size factor normalization method from the DESeq2 package to normalize raw counts, ensuring that
expression values are comparable across samples.

a. Create metadata table

The metadata table links the columns of the count matrix (samples) to their experimental conditions. Each row in the
metadata corresponds to a sample, and each column describes a variable. Here, we create a simple metadata table that defines
the Condition for each sample as either Tumor or Normal. The row names of the metadata table should match the column
names of the count matrix. Below is how to generate the necessary metadata for the tumor_data object. The same process
should be applied to the normal_data. The data.frame() creates a data frame with two columns, Sample and Condition, and
rep() will replicate the total number of rows of the data frame.

metadata tumor <- data.frame(Sample = colnames (tumor data),
Condition = rep(c('Tumor'),337))
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metadata normal <- data.frame (Sample = colnames(normal data),
Condition = rep(c('Normal'),32))

b. Run the DeSeq2 normalization

Caution: Errors encountered during DESeq2 normalization: The most common error that occurs when creating the
DESegDataSet object is a mismatch between the column names of the count matrix and the row names of the sample
metadata. When this occurs, DESeq2 will raise an error similar to:

Error in DESegDataSet (se, design = design, ignoreRank)
all variables in the design formula must be columns in colData

To solve the issue, verify that the column names of the count matrix match exactly the sample identifiers in the metadata by
running the following command:

all (colnames (tumor data) == metadata tumor$Sample)

The command should return TRUE. If it returns FALSE, locate and correct any inconsistencies (e.g., "Sample-01" vs.
"Sample.01", extra spaces, or different capitalization) in the count-matrix column names (or in the metadata) before
recreating the DESegDataSet object.

Here, we construct DESeqDataSet objects and run the DESeq normalization pipeline. The design = ~1 formula is used
because we are not performing differential expression analysis. We are only using DESeq2's robust method for estimating
size factors to normalize the data.

# 1. Construct the DESegDataSet object for the tumor data
dds_tumor <- DESegDataSetFromMatrix (countData = round(tumor data), colData =
metadata tumor,design = ~1)

# 2. Run the DESeq function to estimate size factors
dds tumor <- DESeq(dds tumor)

# 3. Extract the normalized counts matrix
normalized counts tumor <- counts (dds tumor, normalized = TRUE)

# Repeat the entire process for your normal data

dds normal <- DESegDataSetFromMatrix (countData = round(normal data), colData =
metadata normal, design = ~1)

dds normal <- DESeq(dds_ normal)

normalized counts normal <- counts(dds normal, normalized = TRUE)

Alternative normalization approach: In addition to DESeq2's normalization, the trimmed mean of M-values (TMM)
implemented in the edgeR package is one of the most common and direct alternative methods. For most standard differential
expression analyses, both DESeq2's method and edgeR's TMM are considered gold standard choices. For TMM, please refer
to the edgeR user’s guide:
https://www.bioconductor.org/packages/devel/bioc/vignettes/edgeR/inst/doc/edgeR UsersGuide.pdf

3. Filtering out low-variance genes

Filtering out genes with low variance is a key preprocessing step in WGCNA. Genes that show little variation across samples
are often less biologically informative, and removing them helps reduce noise and computational burden.

To enable fair comparisons of variance, we first apply the variance-stabilizing transformation using the
varianceStabilizing Transformation() function from DESeq2. This approach stabilizes the variance across a broad range of
expression levels, ensuring that any observed differences reflect true biological variation rather than artifacts of expression
levels.

vsd_tumor <- varianceStabilizingTransformation (dds_tumor)
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vsd normal <- varianceStabilizingTransformation (dds normal)

Afterward, a subset of the most variable genes is selected for network construction. The selection of the threshold is based
on the dataset characteristics. For large datasets (> 50 samples), a stringent threshold, such as selecting the top 5,000—8,000
most variable genes, or the top 10%—-25% by variance, is a common and effective practice [1]. For smaller datasets (< 30
samples), a more lenient threshold, such as the top 25%—-50% most variable genes, is recommended to retain enough
genes for meaningful network construction [2]. Alternatively, gene selection can be guided by statistical methods to identify
significantly differentially expressed genes. This approach compares expression levels between tumor and normal samples,
typically applying a p-value threshold (after FDR correction) of less than 0.05. For more details, refer to the corresponding
protocols [26,27]. In this study, given our large sample size, we applied a very stringent variance-based filter, selecting
only the top 5% most variable genes, those above the 95th percentile of variance, for analysis.

rv_tumor <- rowVars (assay(vsd tumor))

rv_normal <- rowVars (assay(vsd normal))

g95 tumor <- quantile(rv_tumor, 0.95)

g95 normal <- quantile(rv_normal, 0.95)

filtered tumor <- assay(vsd_tumor) [rv_tumor > g95 tumor, ]
filtered normal <- assay(vsd normal) [rv_normal > g95 normal, ]

Caution: Gene filtering and scale-free topology considerations. The choice of gene filtering strategy significantly impacts
WGCNA's ability to construct scale-free networks, which is a fundamental assumption of the method. Users must carefully
consider how their filtering approach may affect network topology, as follows:

Variance-based filtering: Selecting genes based on expression variance across samples, as described in this protocol,
generally preserves scale-free topology because high-variance genes represent diverse biological processes rather than
artificially connected gene sets [28].

Avoiding problematic filtering strategies: As suggested by WGCNA’s developer, do not filter genes based solely on
differential expression between conditions, as differentially expressed genes are often co-regulated and highly
interconnected due to shared biological perturbations. This creates artificially dense networks that violate scale-free
assumptions and can lead to unreliable module detection.

As stated above, the threshold for consideration is as follows:

* Large datasets (>50 samples): Top 5%—10% most variable genes typically maintain topology while reducing computational
burden.

» Smaller datasets (<30 samples): Use more lenient thresholds (top 25%—-50%) to retain sufficient genes for meaningful
network construction.

« Always verify topology: After filtering, examine scale independence plots to ensure R? > 0.8-0.9 at your chosen soft power
threshold.

Troubleshooting poor topology fit:

If scale independence consistently falls below R? = 0.8 across reasonable soft-thresholding power ranges (6-20), consider:
* Increasing the gene selection threshold (e.g., from top 5% to top 15%).

* Removing potential batch effects before filtering.

C. Perform WGCNA

In this section, we perform WGCNA on the preprocessed data to identify gene co-expression modules and compare their
properties between tumor and normal samples. For the WGCNA, the workflow follows the tutorial by Jennifer Chang,
available at https://bioinformaticsworkbook.org/tutorials/wgcna.html [29]. First, we select an appropriate soft-thresholding

power, construct the co-expression networks, and identify modules. Next, we generate data for downstream analyses, such
as network visualization in Cytoscape.

1. Choosing the soft-thresholding power

WGCNA requires choosing a soft-thresholding power to achieve a scale-free topology. The soft-thresholding power
parameter () is critical for WGCNA network construction and requires careful consideration based on your dataset
characteristics. The soft power transformation suppresses low correlations (typically noise) while preserving strong
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biological correlations, with the goal of achieving scale-free topology while maintaining reasonable connectivity. Soft-
thresholding power transformation converts similarity matrices into adjacency matrices by raising correlation values to the
power B. Higher powers increasingly suppress weak correlations, creating sparser networks with fewer but stronger
connections. The transformation helps distinguish genuine biological co-expression from technical noise.

The optimal soft-thresholding power reflects the underlying correlation structure of the data. Thus, different datasets require
different powers:

* Low powers (1-6): Datasets with strong biological drivers (disease states, drug treatments, developmental transitions)
often exhibit high baseline correlations and achieve scale-free topology at lower powers.

* Moderate powers (7—12): Common for datasets with moderate biological variation or mixed sample types.

* High powers (13-20+): Required for datasets with subtle biological differences, well-controlled conditions, or normal
tissue samples where genuine correlations are weaker relative to noise.

Selection criteria:

s Primary criterion: First power achieving R? > 0.9 for scale-free topology.

Note: If no reasonable power (< 15 for unsigned networks, < 30 for signed networks) achieves R> > 0.9, a threshold of R* >
0.8 is acceptable and widely used in the WGCNA community.

* Secondary criterion: Ensure reasonable mean connectivity (typically <200-300 for most datasets).

* Biological context: Consider the expected strength of biological effects in your experimental design.

Mean connectivity represents the average number of connections per gene in the network and serves as a crucial metric for
evaluating network quality alongside scale-free topology fit. Understanding this parameter is essential for making informed
decisions about soft-thresholding power selection.

Mean connectivity quantifies how densely connected your network is by calculating the average degree (number of
connections) across all genes. It reflects the balance between preserving genuine biological relationships and suppressing
noise correlations.

Interpreting mean connectivity values:

» Very high connectivity (> 1,000): Often indicates insufficient noise suppression, presence of strong batch effects, or
dominant biological drivers that create artificially high correlations across many genes. Networks with extremely high
connectivity may violate scale-free assumptions.

* High connectivity (500—1,000): May be acceptable for datasets with strong biological signals, but users should verify that
high connectivity reflects genuine biology rather than technical artifacts.

* Moderate connectivity (100—500): Typical range for well-constructed biological networks that balance noise suppression
with preservation of genuine co-expression relationships.

* Low connectivity (50-100): Acceptable for networks focusing on the strongest biological relationships, though users
should ensure that important biological signals have not been over-suppressed.

* Very low connectivity (< 50): May indicate over-suppression of genuine biological signals due to excessively high soft-
thresholding power; consider reducing the power threshold.

Balancing topology fit and connectivity: when selecting soft power, users must balance scale-free topology fit (R?) with
reasonable mean connectivity:

+ Ideal scenario: R? > 0.8-0.9 with mean connectivity 100—500.

* High R? but very low connectivity: May indicate over-suppression; consider lower soft-thresholding power.

* Moderate R? but reasonable connectivity: Often acceptable for complex biological datasets.

* Poor R? and very high connectivity: Indicates data quality issues requiring investigation.

Dataset-specific considerations:

* Disease/treatment studies: May naturally have higher connectivity due to coordinated biological responses.

* Normal tissue studies: Typically show lower baseline connectivity, requiring higher soft-thresholding powers.
* Mixed sample types: May show higher connectivity due to biological heterogeneity.

Troubleshooting poor topology fit:
If no reasonable power (< 15 for unsigned networks, < 30 for signed networks) achieves R* > 0.8-0.9:
* Check for batch effects or sample outliers using PCA
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+ Consider less stringent gene filtering
* Evaluate whether strong biological drivers are preventing scale-free topology
* For datasets with unavoidable strong drivers, use empirical power selection based on sample size rather than topology fit

Here, we evaluate powers from 1 to 20 (increasing by 2 beyond 10) and use the pickSofiThreshold() function to determine
the optimal value. We can adjust this range based on each dataset’s complexity and research objectives.

allowWGCNAThreads ()
powers = c(c(1:10), seqg(from = 10, to=20, by=2))

The power is picked using pickSoftThreshold()

# Tumor

sft tumor <- pickSoftThreshold(t(filtered tumor), powerVector = powers, verbose =
5)

sft tumor

# Normal

sft normal <- pickSoftThreshold(t(filtered normal), powerVector = powers, verbose
= 5)

sft normal

Based on the results, a soft-thresholding power of 3 is recommended for the tumor dataset (Figure 3), and 14 for the normal
dataset (Figure 4). These choices ensure that the resulting co-expression networks approximate a scale-free topology while
maintaining a reasonable neighborhood size. To confirm these selections, visualize the scale independence and mean
connectivity plots (Figure 5), which should support the appropriateness of the chosen powers.

$powerEstimate
[1] 3
$fitIndices

Power  SFT.R.sq slope truncated.R.sq mean. k. median.k. max.k.
1 1 0.03757809 0.4253194 0.6448451 255.1242878 2.656955e+02 413.22352
2 2 0.35904166 -0.4155518 0.7898080 71.8731576 6.224634e+01 174.48973
3 3 0.94012841 -0.9815318 0.9231012 32.5388803 1.873745e+01 131.61568
4 4 Q.92443634 -1.0347201 0.9265577 19.4499973 6.891429e+00 110.80323
5 5 0.92610783 -0.9913898 0.9219913 13.4471633 2.884672e+00 96.53802
6 6 0.94410720 -0.9723376 0.9308181 10.0361066 1.273321e+00 85.49922
7 7 0.94481474 -0.9632694 0.9292978  7.8236471 6.185114e-01 76.48394
8 8 ©.94666981 -0.9740270 0.9334544 6.2686702 3.281961e-01 68.90451
9 9 0.94107977 -0.9892677 0.9296523 5.1193937 1.836236e-01 62.41491
10 10 0.97194887 -0.9859316 0.9702218 4.2411268 9.860531e-02 56.78698
11 10 ©@.97194887 -0.9859316 0.9702218 4.2411268 9.860531e-02 56.78698
12 12 0.95337098 -1.0091287 0.9496280 3.0066192 3.281404e-02 47.51073
13 14 0.96555581 -1.0599092 0.9596704  2.2034093 1.099997e-02 40.20213
14 16 @.95231763 -1.0759778 0.9421558 1.6574025 3.855752e-03 34.32441
15 18 0.92246752 -1.0878955 0.9031765 1.2737921 1.380104e-03 29.52185
16 20 @.90523938 -1.1258845 0.8800059 @.9969689 5.036562e-04 25.54712

Figure 3. Soft threshold power selection for tumor samples. Output from WGCNA pickSoftThreshold ()
showing network topology metrics across power values 1-20. A power of 3 was chosen to approximate a scale-free co-
expression network. Metrics include the scale-free topology fit index (SFT.R.sq), slope, truncated R% and connectivity
measures (mean, median, and maximum).
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$powerEstimate
[1] 14
$fitIndices

Power  SFT.R.sq slope truncated.R.sq mean.k. median.k. max.k.
1 1 0.82634876 1.7116648 0.87637949 608.59998 626.688537 861.60834
2 2 ©.15343724 ©@.3053358 0.15334832 317.99544 347.103795 561.47606
3 3 0.03530288 -0.1319731 0.00368832 199.93784 220.732347 407.43183
4 4 0.19237083 -0.3071962 0.15996653 139.00003 151.171409 309.95120
5 5 ©.39234615 -0.3431479 0.29216981 102.84132 106.128477 242.40292
6 6 0.51176652 -0.5264627 0.54098395 79.38168 75.872807 213.71428
7 7 ©.57908306 -@.7275545 0.67546719 63.19322 55.152534 194.99387
8 8 0.66605597 -0.8533610 0.78792437 51.50573 40.212960 178.85493
9 9 0.74398656 -0.9411351 .85873745 42.76971 30.123872 164.70716
1@ 10 0.75696049 -1.0187821 .86965658 36.05704 23.17867@ 152.16864
11 10 0

12 12 ©.83379512 -1.1152354 .91416197 26.55714 14.095538 130.90249
13 14 0.86340057 -1.1590169 .93886248 20.28600 .579965 114.67012

0
0
.75696049 -1.0187821 0.86965658 36.05704 23.178670 152.16864
0
0 9
14 16 0.88987356 -1.1877848 0.95474998 15.92742 6.486688 101.38113
4
3

15 18 ©0.90328926 -1.2219692 95855146 12.77752 555890 90.25933
16 20 ©.90371334 -1.2448527 96485012 10.43048 .244264 81.27885

Figure 4. Soft threshold power selection for normal samples. Output from WGCNA pickSoftThreshold ()
showing network topology metrics across power values 1-20. A power of 14 was chosen to approximate a scale-free co-
expression network. Metrics include the scale-free topology fit index (SFT.R.sq), slope, truncated R? and connectivity
measures (mean, median, and maximum).
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Figure 5. Soft threshold selection for scale-free network construction. (A) Scale independence and mean connectivity
plots for tumor network construction. (B) Scale independence and mean connectivity plots for normal network construction.
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In the scale independence plot, the y-axis represents the R? value (scale-free topology model fit or signed R?), which indicates
how well the network follows a power-law distribution. A higher R? value signifies a stronger scale-free topology. The red
line, set at 0.9, marks the threshold for selecting a soft-thresholding power that aligns the network structure with typical
biological organization. The x-axis shows various power values, and the chosen power should be above this threshold. In
the mean connectivity plot, the y-axis shows the average connectivity across all genes in the network at different soft-
thresholding powers (shown on the x-axis). This helps assess how network connectivity changes as the power value increases.

Interpretation: Tumor samples require soft-thresholding power = 3, indicating that cancer exhibits widespread transcriptional
dysregulation with strong correlations due to shared oncogenic pathways. Normal samples require soft-thresholding power
= 14, indicating they show more subtle, tightly regulated expression patterns requiring stronger noise suppression to reveal
genuine biological networks.

power tumor <- 3
power normal <- 14

#Plotting the results
par (mfrow = c(1,2))
cexl = 0.9

#Index the scale-free topology adjustment as a function of the power soft
thresholding.

plot (sft tumors$fitIndices(,1], -sign(sft_ tumor$fitIndices[,3]) *sft tumor
SfitIndices([,2],

xlab="Soft Threshold (power)",ylab="Scale Free Topology Model Fit, signed
R"2", type="n"

main = paste("Scale independence"))
text (sft tumor$fitIndices[,1], -sign(sft_ tumor$fitIndices[,3]) *sft tumor
SfitIndices([,2],

labels=powers, cex=cexl,col="red")

#This line corresponds to use a cut-off R? of h
abline (h=0.9,col="red")

#Connectivity means as a function of soft power thresholding
plot(sft tumor$fitIndices[,1], sft tumor$fitIndices[,5],
xlab="Soft Threshold (power)",ylab="Mean Connectivity", type="n",
main = paste("Mean connectivity"))
text (sft tumor$fitIndices[,1], sft tumor$fitIndices|(, 5], labels=powers,
cex=cexl,col="red")

#This line corresponds to use a cut-off R? of h
abline (h=0.9,col="red")

plot(sft normal$fitIndices[,1], -
sign(sft normal$fitIndices[,3])*sft normal$fitIndices([,2],

xlab="Soft Threshold (power)",ylab="Scale Free Topology Model Fit, signed
R™2", type="n",

main = paste("Scale independence"))
text (sft normalSfitIndices[,1], -
sign(sft normal$fitIndices[,3])*sft normal$fitIndices([,2],

labels=powers, cex=cexl,col="red")

#This line corresponds to use a cut-off R? of h
abline (h=0.9,col="red")
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#Connectivity means as a function of soft power thresholding
plot (sft normal$fitIndices[,1], sft normal$fitIndices[,5],
xlab="Soft Threshold (power)",ylab="Mean Connectivity", type="n",
main = paste("Mean connectivity"))
text (sft normalSfitIndices|[,1], sft normalSfitIndices|[,5], labels=powers,
cex=cexl,col="red")

#This line corresponds to using a cut-off R? of h
abline (h=0.9,col="red")

2. Construct the co-expression networks

Using the previously identified powers, we construct co-expression networks for the tumor and normal datasets separately.
We then apply the blockwiseModules() function to identify modules, each representing a group of co-expressed genes. A
dendrogram can be generated to visualize clusters of highly co-expressed genes (Figure 6).

power tumor = 3

power normal = 14

# Tumor

netwk tumor <- blockwiseModules (
t(filtered tumor),

power = power tumor,
networkType = "signed",
deepSplit = 2,
minModuleSize = 30,

mergeCutHeight = 0.25,
numericLabels = TRUE,
saveTOMs = TRUE,

saveTOMFileBase = "tumor",
verbose = 3
)
mergedColors = labels2colors(netwk_tumor$colors)
# Plot the dendrogram and the module colors underneath
plotDendroAndColors (
netwk tumor $dendrograms[[1]],
mergedColors [netwk tumor SblockGenes[[1]]1],

"Module colors",
dendroLabels = FALSE,
hang = 0.03,

addGuide = TRUE,
guideHang = 0.05 )

# Normal
netwk normal <- blockwiseModules (
t(filtered normal),

power = power normal,
networkType = "signed",
deepSplit = 2,
minModuleSize = 30,
mergeCutHeight = 0.25,
numericLabels = TRUE,
saveTOMs = TRUE,
saveTOMFileBase = "normal",
verbose = 3

)
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mergedColors = labels2colors (netwk normal$colors)
# Plot the dendrogram and the module colors underneath
plotDendroAndColors (

netwk_normal$dendrograms[[1]],

mergedColors[netwk normalS$blockGenes[[1]]],

"Module colors",

dendroLabels = FALSE,

hang = 0.03,

addGuide = TRUE,

guideHang = 0.05 )
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Figure 6. Cluster dendrogram. (A) Tumor network cluster dendrogram. (B) Normal network cluster dendrogram. These
dendrograms depict the hierarchical clustering of genes based on their co-expression relationships in each dataset. Genes
with similar expression patterns are grouped into modules, as indicated by the colored bars beneath the dendrogram. The
branching structure reflects the clustering relationships among the modules.

Cite as: Nguyen, P. and Zeng, E. (2025). A Protocol for Weighted Gene Co-expression Network Analysis With 14
Module Preservation and Functional Enrichment Analysis for Tumor and Normal Transcriptomic Data. Bio-
protocol 15(18): e5447. DOI: 10.21769/BioProtoc.5447



bio-protocol Published: Sep 20, 2025

We can summarize the module assignments to determine how many genes each module contains. The following code
displays a table of module sizes, with each module identified by its assigned color and the corresponding gene count.

table (netwk tumor$colors)
table (netwk normalScolors)

The tumor network (Figure 7) yielded 6 modules (ranging from 176 to 553 genes per module), while the normal network
(Figure 8) produced 8 modules (ranging from 47 to 549 genes per module). This difference reflects fundamental changes in
gene regulatory organization between healthy and diseased states [30].

e 1 2 3 4 5
553 327 307 298 224 176

Figure 7. Gene module sizes in the tumor co-expression network

e 1 2 3 4 5 6 7
91 549 446 410 108 78 50 47

Figure 8. Gene module sizes in the normal co-expression network

Tumor network characteristics (6 modules): The tumor samples show fewer total modules with a relatively even distribution
of module sizes (553, 327, 307, 298, 224, 176 genes). This pattern suggests that cancer has created broader, more
interconnected regulatory networks where normal boundaries between biological processes have broken down. The largest
module (553 genes) may represent a major oncogenic program where multiple pathways have become coordinately
dysregulated.

Normal network characteristics (8 modules): The normal samples exhibit more modules with greater size variation (549,
446, 410, 108, 78, 50, 47 genes). The presence of several smaller, specialized modules (108, 78, 50, 47 genes) alongside
larger ones reflects the maintained functional compartmentalization characteristic of healthy tissue. The smaller modules
likely represent discrete, specialized biological functions that operate independently under normal physiological conditions.

This module pattern demonstrates a key principle in cancer biology: regulatory network reorganization. In healthy tissue,
genes are organized into discrete functional modules that maintain cellular homeostasis. Cancer disrupts this organization,
creating larger, more interconnected modules as oncogenic signals override normal regulatory boundaries and coordinate
the expression of genes that would typically be independently regulated.

Guidance for interpreting your own module patterns:
When analyzing your datasets, consider these principles:

Expected patterns:

* Disease states: Often show fewer, larger modules due to regulatory disruption.

* Normal/control conditions: Typically exhibit more, smaller modules reflecting functional specialization.
* Treatment effects: May create intermediate patterns depending on treatment intensity.

Biological validation:

* Modules should contain functionally related genes (verify with GO/KEGG enrichment).
* Very large modules (> 1,000 genes) may indicate technical issues.

* Very small modules (< 30 genes) may lack statistical power.

* Module patterns should align with the known biology of your experimental system.

3. Compare module eigengenes

Module eigengenes (MEs) represent the first principal component of each module, summarizing the overall expression
pattern of that module’s genes. Extracting MEs enables straightforward comparisons among modules and across conditions.
To visualize module relationships, we create a heatmap of module eigengene correlations, where each cell represents the
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correlation between two modules (Figure 9). This approach reveals modules with similar expression patterns and can provide
insights into shared biological functions or regulatory mechanisms.
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Figure 9. Module eigengene correlation heatmap. (A) Tumor module eigengene correlation heatmap. (B) Normal module
eigengene correlation heatmap. The heatmap represents the pairwise correlations between module eigengenes (MEs) in the
dataset. Each ME represents the first principal component of gene expression for its respective module. The color scale
indicates correlation strength, ranging from blue (negative correlation) to red (positive correlation). Modules with strong
positive correlations (red regions) may represent functionally related groups of genes, whereas weak or negative correlations
(blue regions) suggest divergent biological processes.

# Tumor eigengenes
MEs tumor<- moduleEigengenes (t (filtered tumor), colors =
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labels2colors (netwk tumorS$colors)) Seigengenes
MEs tumor <- orderMEs (MEs_ tumor)
colnames (MEs_ tumor) = names (MEs_ tumor) %>% gsub("ME","", .)

# Normal eigengenes

MEs normal <- moduleEigengenes (t (filtered normal), colors =
labels2colors (netwk normal$colors)) $eigengenes

MEs normal <- orderMEs(MEs normal)

colnames (MEs normal) = names (MEs normal) %>% gsub("ME","", .)

# Correlation heatmap of module eigengenes for both conditions
cor tumor <- cor (MEs_ tumor)

cor normal <- cor(MEs normal)

heatmap.2 (cor_ tumor,

main = "Tumor Module Eigengene Correlation",

trace = "none",

col = colorRampPalette(c("blue", "white", "red")) (50), # Color gradient
key = TRUE, # Adds a color key (legend)

key.title = "Correlation",

key.xlab = "Value",

density.info = "none", # Disable histogram in the legend

denscol = NA) # Remove histogram color)

heatmap.2 (cor normal,
main = "Normal Module Eigengene Correlation",
trace = "none",
col = colorRampPalette(c("blue", "white", "red")) (50), # Color gradient
key = TRUE, # Adds a color key (legend)

key.title = "Correlation",

key.xlab = "Value",

density.info = "none", # Disable histogram in the legend
denscol NA) # Remove histogram color)

4. Export the network to Cytoscape
To visualize the resulting networks, we export the data as edge and node lists compatible with Cytoscape. Rather than

displaying the entire co-expression network, which can be both large and complex, we apply a filtering step to retain only
edges with correlation values exceeding 0.1.

#Tumor dataset

TOM_tumor <- TOMsimilarityFromExpr (t(filtered tumor), power = power tumor)
row.names (TOM tumor) <- row.names (filtered tumor)

colnames (TOM_tumor) <- row.names (filtered tumor)

# Convert the TOM matrix into a long-format edge list
edge list tumor <- data.frame (TOM tumor) %>%

mutate (genel = row.names(.)) %>%
pivot longer (-genel, names to = "genel2", values to = "correlation") %>%
filter (genel != gene2, correlation > 0.1) # Keep edges with correlation > 0.1

# Remove duplicate edges by considering them undirected (keeping only one direction)
edge list tumor <- edge_ list tumor %>%

mutate (pair = pmap chr(list(genel, gene2), ~ paste(sort(c(...)), collapse =
"7") ) ) %>%
distinct (pair, .keep_all = TRUE) %>%

ungroup () %$>%
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select (-pair)

# Convert Ensembl gene IDs to gene symbols
edge list tumorSgenel.name <- maplds(org.Hs.eg.db, keys = edge list tumor$genel,

column = "SYMBOL", keytype = "ENSEMBL")
edge list tumorSgene2.name <- maplds(org.Hs.eg.db, keys = edge list tumor$gene2,
column = "SYMBOL", keytype = "ENSEMBL")

# Create Cytoscape-compatible edge list

edge list tumor.cyto <- data.frame (
genel = edge list tumorSgenel.name,
gene2 = edge list tumorS$gene2.name,
value = edge list tumorS$correlation

) $>%

na.omit ()

write.table(edge list tumor.cyto, "modules/edge list tumor.txt", sep = "\t",
row.names = FALSE, col.names = TRUE, quote = FALSE)

# Create a node list with module information
module tumor <- data.frame (
gene = names (netwk tumorS$colors),
color = labels2colors(netwk_tumor$colors)
)
module tumor$genename <- maplds (org.Hs.eg.db, keys = module tumor$gene,
column = "SYMBOL", keytype = "ENSEMBL")

# Keep only nodes present in the edge list
module tumor <- module tumor[module tumor$genename %$in%

c(unique (edge list tumor.cyto$genel),
unique (edge list tumor.cyto$gene2)), ]

write.table (data.frame (genename = module_tumorSgenename, value =
module tumor$color),
"modules/node list tumor.txt", sep = "\t", row.names = FALSE,

col.names = TRUE, gquote = FALSE)

G R
# Repeat the Same Steps for the Normal Dataset
FHEHHHH A A A

These output files (edge_list_tumor.txt, node_list_tumor.txt, edge_list_normal.txt, and node_list_normal.txt) can be
imported into Cytoscape for network visualization.

5. Visualize a network using Cytoscape

While network visualization in Cytoscape is optional, it serves as a valuable quality check for your analysis choices,
particularly your soft-threshold power selection. Network visualization helps you quickly assess whether your chosen soft
power created biologically meaningful gene connections. For example, if your network is too sparse (too few connections),
this indicates the soft power might be too high, filtering out real biological relationships. In contrast, if your network is too
dense (too many connections), this indicates the soft power might be too low, retaining noise in the network and requiring
an increase in power. For the mean connectivity, networks with high mean connectivity (> 500) should be visually apparent
as dense networks, while networks with very low connectivity (< 50) should appear quite sparse.

In this protocol, network visualization and analysis were performed using Cytoscape version 3.10.3, running on macOS
(version 14.6.1, aarch64) with Java version 17.0.5. No plugins were required for this analysis.
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Import the network

* From the top menu bar in Cytoscape, go to File > Import > Network from File.
* Select edge_list_tumor.txt as the input file and click OK.

* There is a table pop-up as shown below (Figure 10):
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Figure 10. Importing network from edge list file

Import node attributes (module colors):

* To import the module color and assign a color to each node, navigate to File > Import > Table from File.

* In the Where to Import Table Data section, choose To selected networks only.

» Under Network List, select the previously imported network, then choose node_list_normal.txt as the attribute file. Finally,
click OK to proceed (Figure 11).
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Figure 11. Importing node attributes table
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Assign module colors to nodes
* On the left-hand side panel, select the Style tab.
* Under Fill Color, click the expand arrow to open the settings (Figure 12).
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Figure 12. Accessing node color properties

* In the Column row, choose the column that contains the module colors (e.g., the value from node_list_tumor.txt) (Figure
13).
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Figure 13. Selecting the module color column

» For Mapping Type, select Discrete Mapping (Figure 14).

Cite as: Nguyen, P. and Zeng, E. (2025). A Protocol for Weighted Gene Co-expression Network Analysis With 20
Module Preservation and Functional Enrichment Analysis for Tumor and Normal Transcriptomic Data. Bio-
protocol 15(18): e5447. DOI: 10.21769/BioProtoc.5447



blb-pl‘OtOCOI Published: Sep 20, 2025

|
] ¥ ¥ ~
o B L QQQa e
x Style v 0O % .
2 default v =
1]
= S
> 5 52
v & “@QQ & More Properties... ¥ A
i
> D Border Paint
v
> 0.0 Border Width
P D . Fill Color
=
> Column
Mapping Type 8]
c A
o Passthrough Mapping ‘
5 |
=)

Figure 14. Setting discrete color mapping

* A list of unique module color values will appear. To set the color for each module, click the ellipsis [...] button to open the
color palette. Select the color that corresponds to the module's name and click OK (Figure 15).
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Figure 15. Assigning module-specific colors

* To change the network's visual organization, select a new algorithm from the Layout menu (Figure 16).
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Figure 16. Network layout selection in Cytoscape

Export the network:

* To save the visualized network, go to File > Export > Network to image, or choose the first icon on the right-hand side

and select Export as Image (Figure 17).
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Figure 17. Exporting network visualization from Cytoscape
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* Choose the desired file format (e.g., PNG, PDF, or SVG) and save it to a local directory (Figure 18).
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Figure 18. Saving network to local machine

* The Cytoscape network visualization should appear as shown in Figure 19.

A

Figure 19. Cont.
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Figure 19. Network created using Cytoscape. (A) Tumor network. (B) Normal network.

Note on colorblind-friendly visualizations: While this protocol uses standard WGCNA color schemes for consistency with
established tutorials, users are strongly encouraged to implement colorblind-friendly palettes when creating figures for
publication or presentation. Consider using:

* Module visualizations: Colorblind-accessible palettes from R packages such as RColorBrewer (e.g., Set2, Dark2 palettes)
or scico.

» Heatmaps: The viridis color scale provides excellent perceptual uniformity and accessibility as an alternative to traditional
red-blue gradients.

* Network visualizations: Cytoscape offers colorblind-friendly color schemes that can be selected through the Style interface.

D. Module preservation analysis

Module preservation analysis evaluates how well modules identified in one reference dataset remain intact in another test
dataset [2]. Our analysis was based on the code from the WGCNA tutorial, specifically section 12.5: “Module preservation
between female and male mice” (https://pages.stat.wisc.edu/~vyandell/statgen/ucla/WGCNA/wgcna.html) [31]. Here, we use
our previously filtered tumor and normal datasets, transposing each matrix so that samples become columns and genes
become rows.

multiData <- list(
Tumor = list(data = t(filtered tumor)), # Transpose to make samples columns
Normal = list(data = t(filtered normal)) # Transpose to make samples columns

# Extract module assignments and colors

tumor modules <- netwk tumor$colors

tumor module colors <- labels2colors(tumor modules)
names (tumor module colors) <- names (netwk_tumor$colors)

Cite as: Nguyen, P. and Zeng, E. (2025). A Protocol for Weighted Gene Co-expression Network Analysis With 24
Module Preservation and Functional Enrichment Analysis for Tumor and Normal Transcriptomic Data. Bio-
protocol 15(18): e5447. DOI: 10.21769/BioProtoc.5447


https://pages.stat.wisc.edu/~yandell/statgen/ucla/WGCNA/wgcna.html

bio-protocol Published: Sep 20, 2025

normal module colors <- labels2colors(netwk normalScolors)
names (normal module colors) <- names(netwk normal$colors)

# Module colors for tumor and normal datasets

multiColor <- list(
Tumor = tumor module colors, # Named vector of module colors for tumor
Normal = normal module colors # Named vector of module colors for normal

#check names to ensure genes name in multiColor match with gene names in the original
data

all (names (multiColor$Tumor) %in% rownames (filtered tumor)) # Should return TRUE
TRUE

all (names (multiColor$Normal) %in% rownames (filtered normal)) # Should return TRUE
TRUE

1. Perform module preservation analysis

We designate the tumor network as the reference and the normal network as the test. Using WGCNA’s modulePreservation()
function, we compute various statistics, including the Z-summary score, which measures how well modules from the
reference dataset are preserved in the test dataset. Higher Z-summary scores indicate stronger preservation.

A key parameter in this analysis is nPermutations, which determines the number of times sample labels are randomly
shuffled to create a null distribution. This process allows for the calculation of a p-value for each preservation statistic. A
low number permutation (e.g., 100) can provide a quick assessment of module preservation. A higher number of
permutations is recommended to ensure robust and stable p-values. For most datasets, setting the number of permutations
to 200 is sufficient. For large datasets or when precise p-values for weakly preserved modules are critical, this can be
increased to 1,000 or more. Computational time scales linearly with the number of permutations. Running a high number
of permutations requires significant computational resources, particularly CPU time. The analysis is CPU-bound rather than
RAM-bound, so a modern multi-core processor is the most important hardware component for completing this step in a
timely manner.

For this study, we perform an initial assessment using 100 permutations.

preservation results <- modulePreservation (
multiData = multiData, # List of datasets

multiColor = multiColor, # List of module colors

referenceNetworks = 1, # Use tumor as reference (index in multiData)
nPermutations = 100, # Number of permutations)

randomSeed = 12345, # For reproducibility

verbose = 3 # Verbose output

)

#Preservation statistics for modules

preservation stats<-

preservation results$preservation$Z$ref.Tumor$inColumnsAlsoPresentIn.Normal
#Remove the “gold” module.

Caution: Understanding and evaluating the gold module

The "gold" module is an artificial reference module automatically generated by WGCNA's modulePreservation() function
as a technical control. It is not a biological module identified from your data. Instead, it contains randomly selected genes
used to establish baseline preservation statistics and represents the null expectation for module preservation. This module
serves as a statistical control, showing what preservation statistics would look like for a randomly assembled set of genes
with no genuine biological relationships. By design, the gold module should show poor preservation because it lacks
biological coherence. Since it is artificially constructed rather than biologically derived, it provides no meaningful biological
insights and must be removed before proceeding with further analysis.

preservation stats <- preservation stats[rownames (preservation stats) != "gold", ]
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2. Assess module preservation

We focus on the Z-summary (Zsummary.pres) to categorize modules as "highly preserved," "moderately preserved," or
"low preserved." Commonly used thresholds are adapted from the hdWGCNA tutorial [32]:

* Z-summary < 2: No preservation.

2 < Z-summary < 10: Moderate preservation.

» Z-summary > 10: High preservation.

We then visualize Z-summary statistics using a dot plot (Figure 20).

mod colors <- rownames (preservation stats) # Module colors
Z summary <- preservation stats$Zsummary.pres

preservation data <- data.frame (Module = mod colors, Z_ summary = Z_summary)

# Plot Z-summary statistics with point plot

ggplot (preservation data, aes(x = Module, y = Z summary, color Module)) +

geom_point(size = 8) + # Larger points

scale color manual (values = mod colors) +

geom_hline (yintercept = 2, linetype = "dashed", color = "red", size = 1) + #
Threshold line

geom_hline (yintercept = 10, linetype = "dashed", color = "blue", size = 1) + #

Strong preservation line
theme minimal () +

theme (
axis.text.x = element text(angle = 45, hjust = 1, vjust = 1, size = 14), #
Larger x-axis tick text
axis.text.y = element text(size = 14), # Larger y-axis tick text
axis.title.x = element text(size = 14, face = "bold"), # Larger x-axis label
axis.title.y = element text(size = 14, face = "bold"), # Larger y-axis label
legend.position = "none",
plot.title = element text(hjust = 0.5, face = "bold", size = 16) # Title
formatting
) +
labs (
title = "Module Preservation Statistics",
x = "Module Colors",
y = "Preservation Z-summary"
)
Module Preservation Statistics
@

30

N
=3

Preservation Z-summary

Figure 20. Module preservation statistics of the tumor network. The dot plot displays the Z-summary values for module
preservation between tumor and normal networks. Each dot represents a module, with colors indicating its respective module
assignment. The y-axis shows the preservation Z-summary, quantifying how well a module’s structure is preserved across
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both networks. The red dashed line at Z = 2 marks the threshold for low preservation (modules not well preserved), while
the blue dashed line at Z = 10 marks the threshold for strong preservation (highly preserved modules).

Figure 20 shows that the blue, turquoise, and yellow modules are highly preserved; the brown and gray modules are
moderately preserved; and the green module exhibits low preservation. The R code below can be used to confirm these
results.

# Identify highly preserved modules

highly preserved <- rownames (preservation stats) [preservation statsS$Zsummary.pres >
10]

print (highly preserved) # List of module colors

“blue” “turquoise” “yellow”

# Identify moderately preserved modules

moderately preserved<-

rownames (preservation stats) [preservation stats$Zsummary.pres > 10]
print (moderately preserved)

“brown” “grey”

# Identify low-preserved modules

low preserved< rownames (preservation stats) [preservation stats$Zsummary.pres > 10]
print (low_preserved)

“green”

# Extract genes for each module (Figure 21)

module names <- unique (tumor module colors)

genes_in modules <- lapply(unique (tumor module colors), function (module) {
names (tumor module colors[tumor module colors == module])

})

names (genes_in modules) <- module names

str(genes in modules)

List of ©

% brown : chr [1:298] "ENSGO@220@01626" "ENSGOBRRA006R47" "ENSGOORG00A6611" “"ENSGRRORORRTA38"
% blue : chr [1:307] "ENSGOR2QB0R4776" "ENSLROROR084799" "ENSGRO002007314" "ENSGRERRDAR9789"
i grey : chr [1:553] "ENSGO@202025a73" “ENSCRO20000735@" "ENSCRO0000a7372" "ENSGRE000208196"
% yellow : chr [1:224] "ENSGO@200027A62" "ENSCROD0A0073A8" "ENSGRO00@12223" "ENSGRO0Q0@47457"
% turguoise: chr [1:327] "ENSGR@@20207306" “"ENSCOO002010438" "ENSGOOOO00016602" "ENSGOOROOBST149"
% green : chr [1:176] "ENSGOR2QB029694" “ENSGROROAA11677" "ENSGRO000046774" "ENSGREORDA56291"

Figure 21. Extraction of module-specific gene lists from tumor network

3. Gene ontology (GO) enrichment analysis

Once modules are classified by their preservation level, we can conduct downstream functional enrichment analyses (e.g.,
GO terms and KEGG pathways) to explore their biological roles. Gene ontology enrichment analysis is performed with the
GO.db package (v3.20.0), downloaded from the Gene Ontology database. KEGG pathway analysis is conducted by querying
the live KEGG database as of Dec 9, 2024. As an example, we examine GO enrichment for the "blue" module (Figure 22).
We can apply the same approach to any other module by substituting “blue” with the desired module’s name.

# GO enrichment for the “blue" module
blue genes <- genes in modules$ blue’

# Define a function for GO enrichment and CSV writing
perform go enrichment <- function(gene list, ontology, output path) {
go_results <- enrichGO(
gene = gene_list,
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OrgDb = org.Hs.eg.db,

keyType = "ENSEMBL",

ont = ontology, # Ontology (BP, CC, MF)
pAdjustMethod = "BH",

gvalueCutoff = 0.05

)

# Write results to CSV

write.csv(go_results, file = output path, row.names = TRUE)
return (go_results)

# Perform GO enrichment for BP, CC, and MF

go_results BP <= perform go enrichment (blue genes, "BP",
"enrich/GO T N/GO_BP blue.csv")
go_results CC <- perform go enrichment (blue_ genes, "cen,
"enrich/GO T N/GO_CC blue.csv")
go_results MF <= perform go enrichment (blue_ genes, "ME",

"enrich/GO T N/GO_MF blue.csv")

# Generate dotplots for each ontology
dotplot BP <- dotplot(go results BP, showCategory=20, font.size=10, label format=70)
+

scale size continuous (range=c(l, 7)) +
theme minimal() +
gogtitle ("GO Enrichment - Biological Process (BP) - Blue module")

dotplot CC <- dotplot (go_results CC, showCategory=20, font.size=10, label format=70)
+

scale size continuous (range=c(l, 7)) +
theme minimal () +
gogtitle ("GO Enrichment - Cellular Component (CC) - Blue module")

dotplot MF <- dotplot (go_results MF, showCategory=20, font.size=10, label format=70)
+

scale size continuous (range=c(l, 7)) +
theme minimal() +
ggtitle ("GO Enrichment - Molecular Function (MF) - Blue module")

# Combine dotplots into a single image
combined plot <- ggarrange (dotplot BP, dotplot CC, dotplot MF, ncol=1l, nrow=3)

print (combined plot)

# Save the combined plot

ggsave ("enrich/GO T N/GO_combined dotplot blue module.png", combined plot,
width=10, height=15)

The analysis strongly indicates that this module of the OSCC tumor network is dominated by genes integral to muscle
function and development. The most significant biological processes are related to muscle contraction and organogenesis,
with the corresponding gene products localized to core contractile structures like myofibrils and sarcomeres. At a molecular
level, the key functions involve actin binding and structural components of muscle, suggesting that dysregulation of genes
related to muscle architecture and mechanics may play a role in this specific OSCC subtype.
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Figure 22. Gene ontology (GO) enrichment analysis for the blue module of tumor network. The dot plot displays results
from GO enrichment analyses—covering biological process (BP), cellular component (CC), and molecular function (MF)—
for the genes within the blue module. The y-axis lists the significantly enriched GO terms, while the x-axis indicates the
gene ratio (the proportion of genes associated with each term). The size of each dot represents the number of genes in that

0.05

0.10
GeneRatio

0.15

0.25

0.25

p.adjust
1.7405810-48

1.750038e-21
3.500075e-21
5.250113e-21

7.000151e-21

2

20
30
40
50
60

[ T X X IO

p.adjust
2e-07
4e-07
6e-07

8e-07

Count
® 20
® «
@

p.adjust

0.005
0.010

0.015

Count

@ =
@
@ «

term, and the color gradient corresponds to the adjusted p-value, with darker red signifying higher significance.

Cite as: Nguyen, P. and Zeng, E. (2025). A Protocol for Weighted Gene Co-expression Network Analysis With
Module Preservation and Functional Enrichment Analysis for Tumor and Normal Transcriptomic Data. Bio-
protocol 15(18): e5447. DOI: 10.21769/BioProtoc.5447



bio-protocol Published: Sep 20, 2025

4. Examine GO term overlap across preservation levels

By consolidating GO terms from multiple modules across various preservation levels, we can identify both overlapping and
distinct functional categories using a Venn diagram. This protocol uses the VennDiagram package to compare the GO term
descriptions from modules categorized as High, Moderate, or Low preservation.

Note: Ensure that files have been created for each ontology and module prior to performing these steps.

a. Create lists of GO terms
This process reads all individual GO result files and combines them into a single master data frame.

# Define directories and file patterns
input dir <- "enrich/GO T N/"
file pattern <- "GO_(BP|CCIMF) (.*).csv" # Matches files like go BP modulel.csv

# Define module preservation levels
module preservation <- data.frame (

Module = c("blue", "brown", "green", "grey", "turquoise", "yellow"), # Replace
with your module names

PreservationLevel = c("High", "Moderate", "Low",'"Moderate", "High", "High" ) #
Corresponding preservation levels

)

# Function to process files
process go files <- function(file path, ontology, module) {
# Read the GO results file
go_data <- read.csv(file path)
# Add ontology and module columns
go_data <- go_data $>%
mutate (
Ontology = ontology,
Module = module
)

return (go data)

# List and process all files
go_files <- list.files(input dir, pattern = file pattern, full.names = TRUE)

# Combine all GO results

combined go results <- do.call(rbind, lapply(go files, function(file) {

# Extract ontology and module from the filename
match <- regmatches (basename(file), regexec(file pattern, basename(file)))
ontology <- match[[1]][2]
module <- match[[1]][3]

# Process the file
process _go_ files(file, ontology, module)

1))

# Add PreservationLevel to the combined results
combined go results <- combined go results $%>%
left join(module preservation, by = c("Module"))

# Save combined results for each ontology

for (ontology in c("BP", "CC", "MF")) {
ontology data <- combined go results %>% filter (Ontology == ontology)
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write.csv(ontology data, file = paste0("enrich/combined go ", ontology, ".csv"),
row.names = FALSE)

}
b. Create GO term lists for comparison and examine the structure of GO enrichment results (Figure 23).

# Read list GO result files

go_results BP <- read.csv("enrich/combined go BP.csv")
go_results CC <- read.csv("enrich/combined go CC.csv")
go_results MF <- read.csv("enrich/combined go MF.csv")
str(go_results BP)

'data.frame': 509 obs. of 16 variables:

$ X 1 chr "G0:0003012" "GO:0006936" "GO:0055001" "G0:0030239" ...

$ 1D : chr "G0:0003012" "G0:0006936" "GO:0@55001" "G0:0030239" ...

$ Description : chr "muscle system process” "muscle contraction” "muscle cell development” "myofibril assembly"
$ GeneRatio : chr "69/275" "S8/275" "47/275" "34/275" ...

$ BgRatio : chr  "489/21468" "378/21468" "220/21468" "82/21468"

$ RichFactor :num  @.141 0.153 @.214 0.415 @.233 ...

$ FoldEnrichment : num 11 12 16.7 32.4 18.2 ...

$ zScore : num 25.5 24,5 26.6 32.4 27 ...

$ pvalue : num 6.24e-52 1.5@e-45 7.12e-44 4.24e-43 7.56e-43 ...

$ p.adjust :num  1,74e-48 2.0%e-42 6.62e-41 2.95e-40 4.22e-40 ...

$ gqvalue :num 1.48e-48 1.77e-42 5.6le-41 2.51e-40 3.58e-40 ...

$ geneID chr "ENSGO02000d7314/ENSGO0000018625/ENSGRO000036448/ENSGOR000058404/ENSGRO0R0A81248/ENSGR0@00091482/ENSGRROBAAS

d_ "ENSGBO@BQBO?314/EN5G@ﬁﬁﬂ@@lSﬁZ5/ENSGBBBBBO36448/ENSG@®BB@@S1248/EN5GQBO@@BB1482/ENSGB@@QB@Q2054/ENSG@BBB@1@BG?8"I __truncated__ "E
SG@BB@@B?7522/ENS6030@0081248/ENSG@@BBBQS696?/ENSGB@@ﬂﬂﬂ?z@54/ENSG@@ﬂﬂ@1@16@5/ENSGBB@09105048”I __truncated__ "ENSGO0000036448/ENSGOOOL
086967 /ENSGEO000092054/ENSGOO000101605/ENSGOOO00105048/ENSGOO0QD109063" | __truncated__ .

$ Count :int 69 58 47 34 44 56 50 56 52 35 ...
$ Ontology : chr "BP" "BP" "BP" "BP" ...
$ Module : chr "blue" "blue" "blue" "blue"

$ PreservatlonLevel chr "High" "High" "High" "High" ...

Figure 23. Structure of GO enrichment results for biological processes (BP). Data frame containing 509 observations
and 16 variables from GO enrichment analysis, including gene IDs, descriptions, GeneRatio, BgRatio, statistical measures
(p-values, p.adjust), and gene mappings for each enriched BP term.

# Split by preservation level

high preservation BP <- go results BP[go results BPSPreservationLevel == "High", ]
moderate preservation BP <- go_results BP[go results BPSPreservationLevel ==
"Moderate", ]

low preservation BP <- go results BP[go results BPS$PreservationLevel == "Low", ]

high terms BP <- na.omit (unique (high preservation BP$Description))
moderate terms BP <- na.omit (unique (moderate preservation BP$Description))
low terms BP <- na.omit (unique (lowipreservationiBP$Description) )

c. Generate a venn diagram and examine overlaps
To retrieve the specific GO terms within an overlapping region, the intersect() function is used, as illustrated below.

# Example command to find the intersection of GO terms
shared terms <- intersect (high terms BP, moderate_ terms BP)

Finally, we use the VennDiagram package to visualize the overlap among the three term lists.

# Load the VennDiagram library
library(VennDiagram)
# Generate Venn diagram
venn.diagram(
x = list(
High = high terms BP,
Moderate = moderate terms BP,
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|
Low = low_terms BP
)y
filename = "enrich/GO comparison venn BP.png",
fill = c("red", "blue", "green"),

alpha = 0.5, # controls how transparent a color is (e.g. alpha = 0.0 for completely
transparent, alpha = 1 for completely opaque, and alpha = 0.5 for 50% transparent)

cex = 1.5, #change text size (e.g. cex = 1.5 makes the text or symbol 50% larger
than the default)

main = "GO Molecular Function Venn Diagram",

cat.pos = c(0, 100, 200), # Adjusts the angle for each label

cat.dist = 0.05 # Increases the distance from the circle

The BP Venn diagram (Figure 24) shows that 285 GO terms are unique to highly preserved modules and 150 to moderately
preserved modules, with 27 terms shared between them. Low-preservation modules contain no enriched BP terms, indicating
that weakly preserved modules lack a unifying biological theme. In the CC category, highly preserved modules capture
nearly all terms (76 unique), whereas moderately preserved modules include only one unique term, and low-preservation
modules share just a single term with the highly preserved set. This pattern suggests that modules with different preservation
levels operate in distinct cellular compartments. The MF diagram reveals the greatest functional overlap: 29 terms are
common to all three preservation levels. Overall, these results indicate that while certain core molecular functions are
retained across the network, many biological processes and subcellular localizations are confined to modules with high or
moderate preservation, underscoring the connection between network stability and biological function.

GO Biological Process Venn Diagram

GO Cellular Component Venn Diagram
High

Moderate
High

Moderate
Low GO Molecular Function Venn Diagram

High

Low

Figure 24. GO term overlap across preservation levels for biological process (BP), cellular component (CC), and
molecular function (MF). The Venn diagram illustrates the overlap of enriched GO terms across BP, CC, and MF categories
at high, moderate, and low preservation levels. The number indicates the counts of GO terms that are unique to each
preservation category (High, Moderate, or Low) or shared between them.
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Below is an example command for examining specific GO term overlap (Figure 25):

# This command finds all GO terms that are common to both the moderate and low
preservation lists.
intersect MF mod low <- intersect (low_terms, moderate_ terms)

[1] "serine-type endcy;eptidase inhibitor activity" "endopeptidase inhibitor activity" "peptidase inhibitor activity"
[4] "endopeptidase regulator activity" "cytokine activity" "iron ion binding"
[7] "arachidonate monooxygenase activity” "aromatase activity"

Figure 25. GO terms shared between low and moderate preservation modules

5. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis

We can similarly perform KEGG enrichment on gene sets from modules at different preservation levels. This procedure
involves collecting the genes and converting them to the appropriate ID format, running enrichment analysis, and visualizing
the results. As with GO term enrichment, we then use a dot plot to visualize KEGG pathways for each preservation level
(Figure 26).

a. Prepare gene lists by preservation level and convert gene identifiers

We create lists of genes corresponding to the High, Moderate, and Low preservation categories. This is done by pooling all
genes from the modules assigned to each category. We then have a list object genes _in modules, where each element
contains the gene IDs for a specific module (e.g., genes in moduless$blue). As the KEGG enrichment tools in
clusterProfiler require ENTREZ Gene IDs as input, we must first convert them using the bitr function from the
clusterProfiler package for this task.

# Preparing Gene Lists by high preservation level genes

high preservation genes <- c(genes_in modules$blue, genes_in modules$Syellow,
genes_in modules$turquoise)

# Convert to EntrezID

high preservation genes.entrez ids <- bitr(high preservation genes, fromType =
"ENSEMBL", toType = "ENTREZID", OrgDb = org.Hs.eg.db)

#Repeat the same process with moderate preservation level genes

moderate preservation genes <- c(genes_in modulesSbrown, genes_ in modulesSgrey)
moderate preservation genes.entrez ids <- bitr (moderate preservation genes,
fromType = "ENSEMBL", toType = "ENTREZID", OrgDb = org.Hs.eg.db)

# and low preservation level

low preservation genes <- c(genes in modules$green) # Low preservation
low preservation genes.entrez ids <- bitr(low preservation genes, fromType =
"ENSEMBL", toType = "ENTREZID", OrgDb = org.Hs.eg.db)

b. Perform KEGG pathway enrichment analysis
With the gene lists in the correct format, we perform enrichment analysis using the enrichKEGG function.

# Perform KEGG enrichment for highly preserved genes
kegg _high <- enrichKEGG (
gene = high preservation genes.entrez idsSENTREZID,
organism = 'hsa', # Human
pvalueCutoff = 0.05

# Perform KEGG enrichment for moderate preserved genes
kegg moderate <- enrichKEGG (
gene = moderate preservation genes.entrez ids$ENTREZID,
organism = 'hsa',
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pvalueCutoff = 0.05

# Perform KEGG enrichment for low preserved genes
kegg low <- enrichKEGG (
gene = low_preservation genes.entrez ids$ENTREZID,
organism = 'hsa',
pvalueCutoff = 0.05

c. Visualize enrichment analysis results
Finally, the results of the enrichment analysis are visualized using a dot plot, an intuitive format for highlighting the most
significant pathways. Figure 26 is generated using the dotplot function from the clusterProfiler package.

# Visualize KEGG enrichment
library(ggplot2)

dotplot (kegg _high, title = "KEGG Pathways - High Preservation") +
theme minimal ()

dotplot (kegg moderate, title = "KEGG Pathways - Moderate Preservation") +
theme minimal ()
dotplot (kegg low, title = "KEGG Pathways - Low Preservation") +

theme minimal ()
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Figure 26. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. The dot plot shows the
significantly enriched KEGG pathways for modules of high, moderate, and low preservation levels. The y-axis represents
pathways, while the x-axis represents the gene ratio (the fraction of module genes associated with a specific pathway). Dot
size scales with the number of genes represented in each pathway, whereas the color gradient reflects the adjusted p-value—
deeper reds indicate greater significance.

The plots in Figure 26 indicate that cancer-related genes from modules with moderate or low preservation are preferentially
enriched in KEGG pathways such as neuroactive ligand—receptor interaction, GABAergic synapse, xenobiotic metabolism
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by cytochrome P450, and cell-adhesion molecules.
E. Reverse reference and test networks

To assess module preservation in the reverse direction (e.g., using the normal network as the reference and the tumor network
as the test), set referenceNetworks = 2.

preservation results.l <- modulePreservation (

multiData = multiData, # List of datasets

multiColor = multiColor, # List of module colors

referenceNetworks = 2, # Use normal as reference (index in multiData)
nPermutations = 200,

randomSeed = 12345, # For reproducibility

verbose = 3 # Verbose output

Next, we repeat the Section D workflow—generate Z-summary plots, classify modules as highly, moderately, or weakly
preserved, and run the corresponding enrichment analyses. The results below summarize the preservation of modules derived
from normal samples within tumor networks.

1. Module preservation statistics

Figure 27 shows that the modules of blue, brown, and turquoise are highly preserved, while those of black, green, and gray
modules are moderately preserved. Red and yellow modules are low-preserved.

Module Preservation Statistics

30

[¥]
o

Preservation Z-summary

Figure 27. Module preservation statistics of normal network. The dot plot displays the Z-summary values for module
preservation between the normal and tumor networks. Each dot represents a module, color-coded by its module assignment.
The y-axis shows the preservation Z-summary, indicating how well each module’s structure is preserved across both
networks. The red dashed line at Z= 2 denotes the threshold for low preservation (modules are considered poorly preserved),
while the blue dashed line at Z = 10 marks the threshold for strong preservation (modules are considered highly preserved).
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2. GO enrichment analysis

Consistent with the tumor network, GO enrichment analysis reveals that the blue module in the normal-tissue network is
strongly enriched for muscle-related genes (Figure 28). The most significant biological processes include muscle contraction,
muscle system processes, and muscle cell differentiation. These gene products localize to the core contractile machinery—
the myofibril and sarcomere. Key molecular functions, such as actin binding and structural constituents of muscle, confirm
that this module embodies the essential framework for constructing and operating healthy muscle tissue.
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Figure 28. Gene ontology (GO) enrichment analysis for the blue module of normal network. The dot plot highlights
significantly enriched GO terms for biological process (BP), cellular component (CC), and molecular function (MF) within
the blue module. The y-axis lists the enriched terms, while the x-axis shows the gene ratio—the proportion of module genes
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mapped to each term. Dot size reflects the number of genes per term, and the color gradient represents the adjusted p-value,
with deeper reds indicating greater significance.

3. Examine GO term overlap across preservation levels

The BP Venn diagram (Figure 29) shows that modules with high (292 terms), moderate (85), and even low (65) preservation
each contain substantial sets of unique biological processes, unlike the tumor-referenced analysis, where low-preservation
modules were largely functionally silent. Eighteen BP terms are shared across all three categories, indicating core processes
vital for normal tissue homeostasis that persist even in disease. For CC, every preservation level maps to distinct cellular
locales: highly preserved modules contribute the most unique components (61 terms), while low-preservation modules still
add 23 unique terms. Only three CC terms are common to every level, reinforcing the idea that modules with different
stability operate in separate subcellular compartments. The MF diagram highlights even stronger specialization. Highly
preserved modules account for most unique functions (109 terms), whereas just two MF terms span all categories. Overall,
although a small set of fundamental functions is conserved, the highly specialized activities of the normal network reside in
its most stable modules, which remain functionally coherent even when their structure is perturbed in the tumor environment.

GO Biological Process Venn Diagram GO Cellular Components Venn Diagram

High High

Moderate Moderate

GO Molecular Function Venn Diagram

High

Moderate

Low

Figure 29. GO term overlap across preservation levels for biological process (BP), cellular component (CC), and
molecular function (MF). The Venn diagram illustrates the overlap of enriched GO terms—covering BP, CC, and MF—
among modules at high, moderate, and low preservation levels.

4. KEGG pathway enrichment analysis

Figure 30 demonstrates that cancer-associated genes from modules with high, moderate, and low preservation are enriched
in KEGG pathways such as IL-17 signaling, tyrosine metabolism, xenobiotic metabolism by cytochrome P450, and chemical
carcinogenesis, driven by DNA adducts.
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Figure 30. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. The dot plot depicts KEGG
pathways significantly enriched in modules of high, moderate, and low preservation. The y-axis lists the pathways, while
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the x-axis shows the gene ratio (the proportion of module genes in each pathway). Dot size represents the number of genes
per pathway, and the color gradient reflects the adjusted p-value—deeper reds indicate higher significance.

Validation of protocol

This protocol has not been validated using the dataset directly downloaded through the TCGA portal. As described in the
Software and datasets section, this protocol uses gene expression data from the GDC Data Release v38.0, downloaded on
October 18, 2023. The dataset is also publicly available as a compressed file (GeneExpression.zip) in the GitHub repository:
https://github.com/biocoms/WGCNA.

This protocol or parts of it has been used and validated in the following research articles:

* Hickner et al. [9]. Whole transcriptome responses among females of the filariasis and arbovirus vector mosquito Culex
pipiens implicate TGF-beta signaling and chromatin modification as key drivers of diapause induction. Functional &
Integrative Genomics (Figure 2)

» Zeng et al. [11]. A computational framework for integrative analysis of large microbial genomics data. The Proceedings
of the 2015 IEEFE International Conference on Bioinformatics and Biomedicine (Figure 5)

* Zhang et al. [6]. Mapping genomic features to functional traits through microbial whole genome sequences. International
Journal of Bioinformatics Research and Applications (Figures 5 and 6)

* Abdullah et al. [8]. Murine myocardial transcriptome analysis reveals a critical role of COPSS8 in the gene expression of
cullin-RING ligase substrate receptors and redox and vesicle trafficking pathways. Frontiers in Physiology (Supplementary
Figure 8)

» Zheng et al. [4]. Temporal small RNA expression profiling under drought reveals a potential regulatory role of small
nucleolar RNAs in the drought responses of maize. Plant Genome (Figure 4)

» Zheng et al. [10]. Co-expression analysis aids in the identification of genes in the cuticular wax pathway in maize. Plant
Journal (Figure 3)
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