
Cite as: Maher, S. P. et al. (2021). A Phenotypic Screen for the Liver Stages of Plasmodium vivax. Bio-protocol 11(23):
e4253. DOI: 10.21769/BioProtoc.4253.
Cite as: Wen, C. and Kimura K. D. (2022). Tracking Moving Cells in 3D Time Lapse Images Using 3DeeCellTracker. Bio-
protocol 12(04): e4319. DOI: 10.21769/BioProtoc.4319.

 Copyright Wen et al.
This article is distributed under the terms of the Creative Commons Attribution License (CC BY 4.0).

1

Published: Feb 20, 2022

Tracking Moving Cells in 3D Time Lapse
Images Using 3DeeCellTracker
Chentao Wen1, * and Koutarou D. Kimura1, 2, 3

1Graduate School of Science, Nagoya City University, Nagoya, Japan
2Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
3RIKEN center for Advanced Intelligence Project, Tokyo, Japan
*For correspondence: chentao-wen@umin.ac.jp

Abstract

Keywords: 3D microscopy, Time lapse images, Cell tracking, Cell segmentation, Deep learning

This protocol was validated in: eLife (2021), DOI: 10.7554/eLife.59187

Recent advancements in 3D microscopy have enabled scientists to monitor signals of multiple cells in various
animals/organs. However, segmenting and tracking the moving cells in three-dimensional time-lapse images (3D +
T images), to extract their dynamic positions and activities, remains a considerable bottleneck in the field. We
developed a deep learning-based software pipeline called 3DeeCellTracker, which precisely tracks cells with large
movements in 3D + T images, obtained from different animals or organs, using highly divergent optical systems. In
this protocol, we explain how to set up the computational environment, the required data, and the procedures to
segment and track cells with 3DeeCellTracker. Our protocol will help scientists to analyze cell activities/movements
in 3D + T image datasets that have been difficult to analyze.

https://creativecommons.org/licenses/by/4.0/

Cite as: Wen, C. and Kimura K. D. (2022). Tracking Moving Cells in 3D Time Lapse Images Using 3DeeCellTracker. Bio-
protocol 12(04): e4319. DOI: 10.21769/BioProtoc.4319.

2

Published: Feb 20, 2022

Graphic abstract:

The flowchart illustrating how to use 3DeeCellTracker.
See the Equipment and Procedure sections for detailed explanations.

Background

Three-dimensional time-lapse (3D + T) microscope techniques allow scientists to monitor the dynamics of multiple
cellular signals in living organs over time, such that the mechanism underlying various physiological phenomena
can be investigated. However, it is difficult to extract signals from cells in 3D + T images. Specifically, large cell
movements, insufficient image quality, and the unbalanced resolution between the x–y plane and z–axis made 3D
cell segmentation and tracking challenging. Deep learning techniques, such as cell segmentation, have proven
effective for image processing (Ronneberger et al., 2015; Van Valen et al., 2016). However, they have not been used

Cite as: Wen, C. and Kimura K. D. (2022). Tracking Moving Cells in 3D Time Lapse Images Using 3DeeCellTracker. Bio-
protocol 12(04): e4319. DOI: 10.21769/BioProtoc.4319.

3

Published: Feb 20, 2022

for cell tracking because of the difficulty in preparing a sufficient amount of annotated tracking data (Moen et al.,
2019). Recently, we solved this problem by simulating cell movements in a 3D space and developed
3DeeCellTracker, a deep learning-based software that can flexibly track cell movements in 3D time-lapse images,
under various imaging conditions (Wen et al., 2021). By applying deep learning to cell tracking, our method
substantially improves the flexibility and accuracy of cell tracking. Our software can be applied readily to track up
to ~1,000 cells on a desktop computer equipped with a CUDA-enabled graphics processing unit (GPU), within a
relatively short runtime. 3DeeCellTracker can be used for tracking cells with large movements in 3D + T images.
On the other hand, it cannot track dividing cells because our algorithm assumes that the number of cells does not
change. Moreover, it is not suitable for tracking images where individual cells move independently. Herein, we
explain the process to install and use our software to process cell images. For more information, readers can refer
to our original paper, together with the README.md file and video tutorials from our GitHub repository
(https://github.com/WenChentao/3DeeCellTracker/).

Software

1. Software list

a. 3DeeCellTracker v0.4.1 (Chentao Wen, https://github.com/WenChentao/3DeeCellTracker/)
b. ImageJ (Wayne Rasband, https://imagej.nih.gov/ij/)
c. ITK-SNAP (Paul Yushkevich and Guido Gerig, http://www. itksnap.org)

2. Datasets for demonstration
The demo data and the pretrained models used in this protocol can be downloaded from https://osf.io/dt76c/.
See Procedure section Steps A1, A3c-i, B1, B2c, B2e-i for where to store these data and models.

Equipment

Computational Requirements
The users need to prepare a desktop computer with a CUDA-enabled GPU required for the deep learning. A large
RAM (at least 16GB) and sufficient hard disk space to store the image data and the segmentation/tracking results
are also strongly recommended. In this protocol, we tested our software under Ubuntu 16.04 using a desktop
computer with the GPU NVIDIA GeForce GTX 1080. For other OS and GPU, the following procedures for
installation may need some modifications.

Install the computational environment
1. Ubuntu

The installer and the installation guide can be found here: https://ubuntu.com/download/desktop.
2. GPU driver

a. Procedures for installation
To install nvidia-418.56, which supports the GPU NVIDIA GeForce GTX 1080 in our PC, run the
following commands in the Ubuntu terminal (pressing Ctrl + Alt + T to open it):

$ sudo add-apt-repository ppa:graphics-drivers
$ sudo apt-get update
$ sudo apt-get install nvidia-418

After restarting the computer, the driver should have been correctly installed. The users can check the
installation by a command:

$ nvidia-smi

https://github.com/WenChentao/3DeeCellTracker/
https://github.com/WenChentao/3DeeCellTracker/
https://imagej.nih.gov/ij/
http://www.itksnap.org/
https://osf.io/dt76c/
https://ubuntu.com/download/desktop

Cite as: Wen, C. and Kimura K. D. (2022). Tracking Moving Cells in 3D Time Lapse Images Using 3DeeCellTracker. Bio-
protocol 12(04): e4319. DOI: 10.21769/BioProtoc.4319.

4

Published: Feb 20, 2022

If the driver has been installed correctly, the driver version will be displayed.

b. Important information
For different GPU models and/or OS, the users need to install the proper GPU drivers according to the
information below:
i. Install a proper NVIDIA GPU driver from the official website: https://www.geforce.com/drivers.
ii. Or choose a proper driver in Ubuntu: https://phoenixnap.com/kb/install-nvidia-drivers-ubuntu.

3. Prerequisite packages used by 3DeeCellTracker

This section is for old NVIDIA GPU models, such as GTX 1080. For the latest GPU models such as RTX 30
series, see section 4.
a. Install Anaconda

We recommend that users install Anaconda to manage the computational environments and python
packages conveniently.
Download the Anaconda installer here: https://www.anaconda.com/products/individual, and install it by
following the command (replace the path and filename with the ones of the downloaded installer):

$ bash ~/Downloads/Anaconda_xxx.sh

Then re-start the terminal.

b. Install prerequisite packages (see the video tutorial 1 in our GitHub repository)
The users can install the prerequisite packages listed in the 3DCT.yml file prepared by us.
To do this, download our GitHub repository by clicking the “Code/Download ZIP” in
https://github.com/WenChentao/3DeeCellTracker, and extract the downloaded file to a local directory.
Then, open the terminal and change the current working directory to the extracted directory by the “cd”
command. Finally, run the following command to create a new environment named 3DCT:

$ conda env create -f 3DCT.yml

The created environment 3DCT can be activated by the following command:

$ conda activate 3DCT

4. Prerequisite packages used by 3DeeCellTracker with latest GPU models
Some of the latest GPU models require the latest versions of CUDA, cuDNN, and TensorFlow, which currently
cannot be simply installed using conda commands. Thus, the users need to manually install them. For these
latest GPU models, such as NVIDIA GeForce RTX 30 series, we recommend that the users install the latest
TensorFlow (≥2.4.0), after installing CUDA 11.x and cuDNN 8.x compatible with the TensorFlow version.
The guides for these installations are listed below:
a. Choose the appropriate versions of TensorFlow and CUDA, cuDNN compatible with each other:

https://www.tensorflow.org/install/source#gpu
b. The guide for installing CUDA in Linux:

https://docs.nvidia.com/cuda/archive/11.2.0/cuda-installation-guide-linux/index.html
c. The guide for installing cuDNN in Linux:

https://docs.nvidia.com/deeplearning/cudnn/install-guide/index.html#install-linux
d. To install libraries, including tensorflow, opencv-python, scikit-image, scikit-learn, matplotlib, and

3DeeCellTracker, the users should first install Anaconda (see section 3a). After that, the users can create a
conda environment, activate it, and install the pip tool in the terminal with the following commands:

$conda create –name 3DCT
$conda activate 3DCT
$conda install pip

https://www.geforce.com/drivers
https://phoenixnap.com/kb/install-nvidia-drivers-ubuntu
https://www.anaconda.com/products/individual
https://github.com/WenChentao/3DeeCellTracker
https://www.tensorflow.org/install/source#gpu
https://docs.nvidia.com/cuda/archive/11.2.0/cuda-installation-guide-linux/index.html
https://docs.nvidia.com/deeplearning/cudnn/install-guide/index.html#install-linux

Cite as: Wen, C. and Kimura K. D. (2022). Tracking Moving Cells in 3D Time Lapse Images Using 3DeeCellTracker. Bio-
protocol 12(04): e4319. DOI: 10.21769/BioProtoc.4319.

5

Published: Feb 20, 2022

Then, the users can install the libraries mentioned above (and other libraries, if 3DeeCellTracker reports
errors that they are not installed automatically) with the pip commands (replace the package_name with
each name mentioned above):

$ pip install package_name

Procedure

The detailed procedures of how to train the 3D U-Net and how to track cells are listed below. All programs (Jupyter
notebooks), demo data, and the expected running results related to the following procedures can be found in the
README.md file in our GitHub repository.

A. Train a 3D U-Net model (see the video tutorial 1 in our GitHub repository)

1. Prepare the data for training 3D U-Net

Before training the 3D U-Net, the users need to prepare two volumes of 3D images, together with the
annotations of the cell’s regions. The annotations can be made using ITK-SNAP. See the video tutorial 3
in our GitHub repository, for how to annotate cell regions. The first volume of image/annotation is
used to optimize the weights of the 3D U-Net (training data), and the second volume of image/annotation
is used to evaluate the accuracy of the 3D U-Net during training (validation data).
 For demonstration, we have prepared the training data and validation data (unet_training.zip), which
can be downloaded from https://osf.io/dt76c/. The users can check their contents in ImageJ after extracting
them to a local directory.

2. Launch the training program
The training program "3D_U_Net_training-clear.ipynb" notebook is stored in the “3DeeCellTracker-
masters/Examples/” folder in the downloaded GitHub repository (see Equipment: Install the computational
environment—step 3b). After activating the newly created environment “3DCT”, run following command
to launch Jupyter Notebook:
$ jupyter notebook
Then find the notebook “3D_U_Net_training-clear.ipynb” and open it.

3. Run the training program
In the opened notebook, the users can click the “Run” button or press “Shift + Enter” to run the multiline
python code in a cell (To avoid confusion, we will use “code” below when mentioning a code cell). To use
our program, modify parameters and run each code according to the following procedures (the alphabet
numbers below are corresponding to the ones in the headings in the notebook).
a. Import packages

Run this code to import packages used in this notebook.
b. Initialize the parameters for training

After modifying the following three parameters, run the code:
i. noise_level: As a starting point, set the value to be the intensity of the background pixels in the

raw image. If the two images (train and validation) have different background intensities, set it
to an intermediate value. A higher value will only include bright regions, while a lower value
will enhance those regions with weak intensities. A proper value should enhance the intensities
of weak cell regions, but not the background regions.

ii. folder_path: This path is used to create a directory (if one does not exist) to save the
training/validation data and the trained model. We recommend the users to set it as
"./folder_name" (replace “folder_name” with a custom name), to create a directory with the
custom name under the directory containing the current notebook file. For example, in this

https://osf.io/dt76c/

Cite as: Wen, C. and Kimura K. D. (2022). Tracking Moving Cells in 3D Time Lapse Images Using 3DeeCellTracker. Bio-
protocol 12(04): e4319. DOI: 10.21769/BioProtoc.4319.

6

Published: Feb 20, 2022

demonstration, we set it as “./unet_01”, which created the directory “unet_01” under
“3DeeCellTracker-masters/Examples/”.

iii. model: This should be a predefined 3D U-Net model. The simplest way is to use the default
value unet3_a(). Advanced users can select other predefined models, such as unet3_b(), unet3_c()
[described in Figure 2—figure supplement 1 in our eLife paper (Wen et al., 2021)], or a custom
model defined by the users (you need to import the model in the "Import packages" code before
modifying this parameter).

c. Load the train/validation datasets
i. In Step A3b, the program has automatically generated a working directory “unet_01” with the

default parameters. The users should move the prepared image and annotation of the training data
to the subfolders of “unet_01”: "train_image" and "train_label”, respectively, and move image
and annotation of the validation data to the subfolders "valid_image" and "valid_label",
respectively.

ii. Run the code to load and show the images/annotations of the training and validation datasets by
max-projection.

d. Pre-process the datasets
i. d1. Run the code and confirm the normalized images (Left). If the normalization result is not

satisfactory (e.g., cells are too weak, or background is too bright), go back to step B, modify
“noise_level”, and run the codes from there again.

ii. d2. Run the code to divide the images into smaller sub-images (to fit the input size of the 3D U-
Net) and show a part of these sub-images.

e. Train the 3D U-Net
Run the code to start training. By default, the training will last for 100 epochs, which usually takes ~2
h on our desktop computer. The training time also depends on the image size of the training data (here
512 × 1024 × 21) and the architecture of the 3D U-Net used (here “unet3_a()”). After each epoch, the
program will evaluate the accuracy of the trained 3D U-Net in validation data. If the accuracy is
improved, the prediction of cell regions will be shown.

f. Select the best weights and save the model
i. After training, select the step number of the last figure, which had generated the most accurate

prediction in the validation data. Or the users can visually inspect the figures to select the best
step.

ii. Set the parameter "step" and run the code. The program will save the 3D U-Net model with the
selected weights in the "models" folder with the name "unet3_pretrained.h5".

4. Close Jupyter Notebook

B. Track the cells (single mode) (see the video tutorial 2 in our GitHub repository)

1. Prepare the data and models for tracking

Before starting the tracking, the users need to prepare the following data and pre-trained models: 1. The
data of 3D time lapse images; 2. The 3D U-Net model pre-trained by the user's own image data obtained
under the same conditions; 3. The FFN model pre-trained by the authors.
We have supplied the images and the pre-trained 3D U-Net for this demonstration, and the pre-trained FFN
suitable for all conditions. The users can download them from https://osf.io/dt76c/.

2. Run the tracking program
a. Import packages

After launching the notebook "single_mode_worm1-clear.ipynb" in the folder "3DeeCellTracker-
masters/Examples/” in the 3DCT environment, run this code to import the necessary packages.

b. Initialize the parameters for tracking
Run this code after modifying the following four groups of parameters:
i. Image parameters

1) volume: Number of the volumes (i.e., time points) of the 3D time lapse images to be tracked
2) siz_xyz: Sizes of each 3D image. Shape: (height, width, depth). Unit: voxels.

https://osf.io/dt76c/

Cite as: Wen, C. and Kimura K. D. (2022). Tracking Moving Cells in 3D Time Lapse Images Using 3DeeCellTracker. Bio-
protocol 12(04): e4319. DOI: 10.21769/BioProtoc.4319.

7

Published: Feb 20, 2022

3) z_xy_ratio: The resolution (length/voxels) ratio between the z axis (depth) and the x-y plane.
4) Z_scaling: The scaling factor for interpolation along the z axis. Should be an integer greater

than or equal to 1. If equal to 1, no interpolation will be applied. A higher value will lead to
more accurate segmentation/tracking results, but also increase the runtime. We recommend
the users set it to 5 or 10 if “z_xy_ratio” is greater than 1, or set it to 1 if z_xy_ratio=1.

ii. Segmentation parameters
1) noise_level: The program uses this value to enhance the cell regions with weak intensities.

Adjust this value to enhance cell regions but not background regions. As a starting point, set
it to the mean intensities of the background regions in the raw images.

2) min_size: Adjust this value so that the program will remove the regions whose sizes (unit:
voxels) are smaller than this value, which may be non-cell artifacts.

iii. Tracking parameters
1) beta_tk: Related to the coherency of the predicted cell movements. A higher value will make

more coherent predictions, while a lower value will make more independent predictions of
cell movements. As a starting point, the user could set it to 300.

2) lambda_tk: Also related to the coherency of the predicted cell movements (higher: more
coherent; lower: more independent). As a starting point, the user could set it to 0.1.

3) maxiter_tk: The number of iterations of “FFN+PR-GLS”. A higher value will lead to more
accurate predictions, but will also increase the runtime. As a starting point, the user could
set it to 20.

iv. Paths
1) folder_path: The path of the directory to be created to save the data, model, and results.

Set it as "./folder_name" (replace “folder_name” with a custom name) to create a directory
with the specified name under the directory containing the current notebook.

2) image_name: The filenames of the images to be tracked.
Set it according to the format of the filenames, where the time index should come before the
layer index. For example, for images with names like: "image_t0002_z011.tif",
"image_t1502_z101.tif", etc., the user should set image_name = "image_t%04i_z%03i.tif",
whereby “%04i” and “%03i” indicate a 4-digit integer and a 3-digit integer, respectively.

3) unet_model_file: The filename of the pre-trained 3D U-Net model described in Step B1.
4) ffn_model_file: The filename of the pre-trained FFN model described in Step B1.

c. Prepare images to be tracked, and the pre-trained U-Net and FFN models.
In the Step B2b, the program has automatically generated a working directory “worm1” (with the
default parameter); we used this name because the demonstration data used here are worm’s neurons.
The users should move the prepared 3D time-lapse images to the folder "worm1/data", and move the
pre-trained 3D U-Net and FFN model files to the folder "worm1/models".

d. Optimize segmentation parameters and segment the image at volume 1.
i. d1. Modify the segmentation parameters

This step can be skipped the first time. If the segmentation result below is poor, return here,
modify these parameters, and run this code again.

ii. d2. Segment cells at volume 1
Run this code to segment the cells in volume 1.

iii. d3. Draw the results of segmentation (Max projection)

Note: To avoid re-calculation, our program saves the cached segmentations in the
“unet_cache” folder. So, if the users need to change the segmentation parameters later, run
“tracker.set_segmentation (noise_level=xx, min_size=xx)” instead of modifying it here (see
descriptions below for the code d1), which will delete the cached segmentations before re-
segmentation.

Cite as: Wen, C. and Kimura K. D. (2022). Tracking Moving Cells in 3D Time Lapse Images Using 3DeeCellTracker. Bio-
protocol 12(04): e4319. DOI: 10.21769/BioProtoc.4319.

8

Published: Feb 20, 2022

Run this code to show the segmentation result including the raw image (top left), the cell-like
regions (top right), and the individual cells (bottom left). All images are shown with max
projection.

iv. d4. Show segmentation in each layer
Run this code to show the segmentation result in each layer.
If the results in d3 and/or d4 are not satisfactory (e.g., Some cells are not detected, or too many
artifacts are included), go back to d1 to modify the parameters and run the codes from there again.

e. Manually correct the segmentation at volume 1 and load it.
i. e1. Manual correction

The automatically generated segmentation in volume 1 has been saved in the folder “auto_vol1”.
The users should correct mistakes in it using another software (We used ITK-SNAP. See our
video tutorial 4 for how to use it, whose links can be found in our GitHub repository). In this step,
the users should focus on correcting the artifacts, the missed cells, and the incorrect separation
of cell regions. On the other hand, the cell boundaries do not need to be accurately corrected
because the program will smoothen the boundaries later (see e4). In our experience, to correct
100-200 cells, 2-3 h will be enough. After correction, save the results as image sequence into the
folder "manual_vol1".

ii. e2. Load the manually corrected segmentation
Run the code to load the manually corrected segmentation.

iii. e3. Re-train the U-Net using the manual segmentation (optional)
This step can be skipped if the segmentation is good enough (i.e., all cells of interest have been
detected, and most of them are correctly separated).
In e3, there are two code cells. To retrain the 3D U-Net, run the first code. By default, the training
will last for 10 epochs (steps).
After training, select the step within the last figure, or visually inspect the figures to select the
most accurate step, and then run the second code. If the prediction is not improved, set step = 0
to restore the initial model.

iv. e4. Interpolate cells to make more accurate/smooth cell boundary
Run the code to interpolate/smoothen the segmentation.

v. e5. Initialize variables required for tracking
Run the code to initialize the variables required for tracking.

f. Optimize tracking parameters.
i. f1. Modify tracking parameters if the test result is not satisfactory (optional)

This step could be skipped the first time. If the result of the tracking test below is poor, return
here, modify these parameters, and run this code.

ii. f2. Test a matching between volume 1 and a target volume, and show the FFN + PR-GLS
process by an animation (five iterations)
Set the target_volume and run the code to match the cells in volume 1 with the cells in the target
volume. As a starting point, the user can set target volume = 2. Other target volumes can also be
tried in order to test the performance under difficult conditions.
After the tracking is finished, an animation will show the matching results within all five
iterations. If the parameters have been set properly, the cells in volume 1 should move to the
corresponding positions in the target volume after 1-5 iterations.

iii. f3. Show the accurate correction after the FFN + PR-GLS transformation
Run the code to show the tiny correction of the cell positions.

iv. f4. Show the superimposed cells + labels before/after tracking
Run the code to show the final prediction for cell positions. If the tracking test is successful, the
predicted cell positions (shown with colours) and the cell-like regions (gray) detected by 3D U-
Net will overlap in the bottom figures. In addition, the spatial patterns of the cell should also be
maintained between volume 1 and the target volume.
If the tracking test includes obvious mistakes, go back to f1 to modify the parameters and run the
codes following from there again.

Cite as: Wen, C. and Kimura K. D. (2022). Tracking Moving Cells in 3D Time Lapse Images Using 3DeeCellTracker. Bio-
protocol 12(04): e4319. DOI: 10.21769/BioProtoc.4319.

9

Published: Feb 20, 2022

g. Track following volumes.
i. Track and show the processes

Run the code to track all the following volumes. After each volume is tracked, the tracking results
between the last volume and this volume will be shown in a figure.
The tracking results (image sequence of moving labels) in each volume will be saved in the folder
"track_results_SingleMode" for further analyses.

ii. Show the processes as an animation (for diagnosis)
After all volumes have been tracked, run this code to confirm the tracking results in each volume.

C. Track the cells (ensemble mode)

Launching the notebook "ensemble_mode_worm4-clear.ipynb" in the folder "3DeeCellTracker-
masters/Examples/” in 3DCT environment, and run it to track the cells in ensemble mode.
The procedures for using the ensemble mode are basically the same as in the single mode, except that the user
needs to add a parameter “ensemble = 20” (or other integers greater than 1). Then the program will predict cell
positions as the average of 20 predictions from different reference volumes.

Acknowledgments

We thank Yuto Endo, Ryoga Suzuki and the other Kimura laboratory members for providing suggestions and
comments about this manuscript.
Funding sources: This work was supported by Japan Society for the Promotion of Science (KAKENHI JP16H06545,
JP20H05700 to K.D.K.), Grant-in-Aid for Research in Nagoya City University (48, 1912011, 1921102), the Joint
Research by National Institutes of Natural Sciences (01112002), and RIKEN Center for Advanced Intelligence
Project (to K.D.K).
Original research paper from which this protocol was derived: Wen et al. (2021).

Competing interests

The authors declare that no competing interests exist.

References

Moen, E., Bannon, D., Kudo, T., Graf, W., Covert, M. and Van Valen, D. (2019). Deep learning for cellular image

analysis. Nat Methods 16(12): 1233-1246.
Ronneberger, O., Fischer, P., Brox, T. (2015). U-Net: Convolutional Networks for Biomedical Image Segmentation.

Medical Image Computing and Computer-Assisted Intervention—MICCAI. Springer.
Van Valen, D. A., Kudo, T., Lane, K. M., Macklin, D. N., Quach, N. T., DeFelice, M. M., Maayan, I., Tanouchi,

Y., Ashley, E. A. and Covert, M. W. (2016). Deep Learning Automates the Quantitative Analysis of Individual
Cells in Live-Cell Imaging Experiments. PLoS Comput Biol 12(11): e1005177.

Wen, C., Miura, T., Voleti, V., Yamaguchi, K., Tsutsumi, M., Yamamoto, K., Otomo, K., Fujie, Y., Teramoto, T.,
Ishihara, T., et al. (2021). 3DeeCellTracker, a deep learning-based pipeline for segmenting and tracking cells
in 3D time lapse images. eLife 10: e59187.

http://www.ncbi.nlm.nih.gov/pubmed/31133758
http://www.ncbi.nlm.nih.gov/pubmed/31133758
https://link.springer.com/chapter/10.1007/978-3-319-24574-4_28
http://www.ncbi.nlm.nih.gov/pubmed/27814364
http://www.ncbi.nlm.nih.gov/pubmed/27814364
https://pubmed.ncbi.nlm.nih.gov/33781383/
https://pubmed.ncbi.nlm.nih.gov/33781383/

