

Plasmodium falciparum Rosette Formation Assay

Inès Vigan-Womas*, Micheline Guillotte and Odile Mercereau-Puijalon

Parasite Molecular Immunology Unit, Institut Pasteur, Paris, France

*For correspondence: ines.vigan-womas@pasteur.fr

[Abstract] Rosetting, *i.e.* the capacity of red blood cells (iRBCs) infected with mature parasite stages to bind two or more uninfected red blood cells (RBCs) is a virulence factor of *Plasmodium falciparum*. This protocol describes an *in vitro* assay to monitor rosette formation by *P. falciparum*-infected red blood cells, including procedures for rosette enrichment, maintenance of rosetting phenotype and assays for rosetting with RBC labeled using lipophilic fluorescent probes.

Materials and Reagents

- A. Human red blood cells and parasitized red blood cells
 - Fresh human red blood cells (RBCs) collected on anticoagulant, preferably citratephosphate-dextrose (CPD). Avoid use of heparin, as most rosettes are heparin-sensitive.
 If fresh RBCs (collected during the previous 24 h) are not available, use a sample stored for less than 2 weeks at 4 °C.
 - 2. *P. falciparum* parasitized red blood cells collected by veinipuncture from patients in the presence of CPD anticoagulant
 - 3. Laboratory lines of *P. falciparum* parasites: 3D7 clone obtained from MR4 or rosetting clones such as Palo Alto 89F5 VarO, IT4/R29, 3D7/PF13 (Vigan-Womas *et al.*, 2011) or IT4/FCR3S1.2
- B. Culture medium reagents
 - 1. Malaria non-immune human AB⁺ serum (pool of 3-5 different donors)
 - 2. RPMI 1640 medium with L-glutamine and 25 mM HEPES (500 ml) (Life Technologies, Gibco®, catalog number: 52400)
 - 3. Hypoxanthine solution 100x (10 mM) (C.C.Pro, catalog number: Z-41-M)
 - 4. Gentamicin solution (50 mg/ml) (Sigma-Aldrich, catalog number: G1397)
 - 5. Human AB⁺ serum (final concentration 10%)
 - 6. Complete culture medium (see Recipes)

C. Other materials

- Non pyrogenic sterile polystyrene, Rectangular Canted Neck Cell Culture Flask with Plug Seal Cap (Corning Incorporated 75 cm², catalog number: 430720, 25 cm², catalog number: 430168, for 20 and 5 ml of culture medium, respectively)
- 2. 5 ml polystyrene round-bottom sterile tube (BD Biosciences, Falcon®, catalog number: 352058)
- 3. Sterile laboratory vacuum filter 0.22 μm (Stericup® Filter Units Millipore, catalog number: 051446)
- 4. Sterile polypropylene conical centrifuge tubes (BD Biosciences, Falcon[®] 15 ml) (BD Biosciences, catalog number: 352097), (Falcon 50 ml) (BD Biosciences, catalog number: 352098)
- 5. Sterile disposable serological 1 ml aspiration pipette (Dominique Dutscher, catalog number: 999079)
- 6. 1.4 ml matrix round bottom non sterile tubes (Thermo Fisher Scientific, catalog number: 10630784)
- 7. Professional gloves (*e.g.* Kimtech Sterling Nitrile gloves, Kimberley-Clark Professional, catalog number: 99211, or Satin Plus gloves Kimberley-Clark Professional, catalog number: SP2330E or 2220E)
- 8. Microscope glass slides (Thermo Fisher Scientific, catalog number: 10090431) and cover slips 22 x 22 mm (Thermo Fisher Scientific, catalog number: 11728691)
- 9. Ice cold Ficoll (Lymphoprep_{TM}, density 1.077 g/ml) (Abcys, catalog number: 1114545)
- 10. Dextran sulfate sodium salt from Leuconostoc spp, MW > 500,000 (Sigma-Aldrich, catalog number: D6001)
- 11. Heparin sodium salt from porcine intestinal mucosa (Sigma-Aldrich, catalog number: H3393)
- 12. Hoechst 33342, 10 mg/ml solution in water (Molecular Probes, catalog number: H-3570)
- 13. PKH67 green fluorescent cell linker (Sigma-Aldrich, catalog number: MINI-67)
- 14. PKH26 red fluorescent cell linker (Sigma-Aldrich, catalog number: MINI-26)
- 15. Foetal bovine serum (Sigma-Aldrich, catalog number: F2442)
- 16. Sterile distilled water RNase DNase free (Life Technologies, Gibco[®], catalog number: 10977-035)
- 17. Giemsa staining reagent: Giemsa R solution (RAL Diagnostics, catalog number: 320310-0500)
- 18. Giemsa buffer tablet pH 7.2 (Merck KGaA, catalog number: 1.09468.0100)
- 19. Methanol GPR Rectapur BDH Proloabo (catalog number: 20846.292)
- 20. Sterile distilled water
- 21. Stock solutions of heparin or dextran sulfate (see Recipes)

Equipment

- 1. Centrifuge with a swing bucket rotor (Thermo Fisher Scientific Heraeus Multifuge 3SR+centrifuge)
- 2. Centrifuge Eppendorf 5702 with an A-4-38 swing bucket rotor (Thermo Fisher Scientific, catalog number: 05-400-318)
- 3. Vacuum pump (ILMVAC Biovac, model: 104)
- 4. Fluorescence microscope with UV-light and 40x or 100x magnification (Leica fluorescence microscope DM5000B, HP Plan ocular 10 x 22 507897, HCX Plan 100x Oil, HCXPL 40x PH2)
- 5. Incubator at 37 °C in continuous gazing: 5% O₂, 5% CO₂ and 90% N₂ (Thermo Fisher Scientific Binder incubator, model: CB210)
- 6. Laminar flow class II, type A2 biological safety cabinet (Fisher Scientific HeraSafe, catalog number: 13-998-002)
- 7. VarioMACSTM magnetic separator (Miltenyi Biotec)
- 8. MACS separation CS columns (Miltenyi Biotec, catalog number: 130-041-305)
- 9. Chemistry Hood

Procedures

Use disposable professional gloves throughout.

- A. In vitro culture of Plasmodium falciparum erythrocytic stages
 - For all details concerning the general method for *in vitro* culture of *P. falciparum* blood stage parasites and assessment of parasitaemia by blood smear see (Moll *et al.*, 2008a; Alexander *et al.*, 2012).
 - 1. Cultivate Plasmodium falciparum parasites in fresh human O⁺ or A⁺ erythrocytes at 5% haematocrit, in CCM (see recipes section), under continuous gazing (5% O₂, 5% CO₂ and 90% N₂) at 37 °C. The gas mixture may also be introduced by blowing gas for 20 sec in the culture flask. Close the flask tightly thereafter. The Palo Alto 89F5 VarO, IT4/R29, 3D7/PF13 or IT4/FCR3S1.2 rosette-forming clones can be used as positive controls, as they have a high proportion of rosette-forming parasites. Note that the percentage of rosette-forming parasites in clinical samples is quite variable.
 - 2. Change medium every day: The flask is gently put under the laminar flow safety cabinet avoiding disturbing the sedimented red blood cells, after 15 min, the medium (supernatant) is carefully aspirated with a sterile disposable serological 1 ml aspiration pipette (devoid of cotton plug) connected to a vacuum pump.
 - 3. Count parasitemia daily. Prepare a blood smear and fix the cells by pouring pure

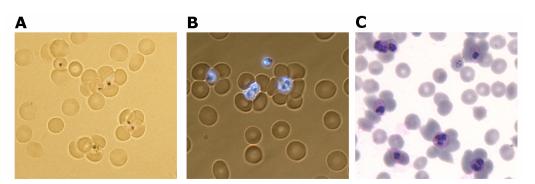
methanol onto the slide – Important note: Handle methanol under a chemistry hood, collect waste store it under a chemistry hood and use ad-hoc waste disposal circuit. Prepare a Giemsa-stained smear of methanol-fixed red cells by immersing the slide in a 5% Giemsa solution in buffer pH 7.2 prepared with 1 tablet of buffer Merck 1.09468.0100 in 1 L sterile distilled water. Stain for 10 min at room temperature. Rinse with buffer and examine under a microscope.

4. Do not allow parasites to grow at too high or too low parasitaemia (up to 10% and less than 0.5%) otherwise they collapse (in practice, dilution is done every 4th day approximately).

Note: Rosette formation is dependent on human serum components - practically speaking presence of human serum is needed to form rosettes. For each rosetting line or isolate, the exact concentration of serum needed should be determined. Usually, it is above 5%. Some commercial serum batches do not sustain rosette formation. Test the batch of sera with positive control lines, such as Palo Alto 89F5 VarO, IT4/R29, 3D7/PF13 (Vigan-Womas et al., 2011) or IT4/FCR3S1.2.

B. Rosette enrichment on ice-cold Ficoll

Centrifugation on ice-cold Ficoll enriches for rosette-forming iRBCs and mitigates the progressive loss of the phenotype resulting from antigenic variation. It can be done with cultures of rosetting parasites (e.g. Palo Alto 89F5 VarO, IT4/R29, 3D7/PF13 or FCR3S1.2) or used to enrich for rosette-forming iRBCs from unselected lines or clinical samples. Starting from a standard (unselected) long-term *in vitro P. falciparum* culture in which no or few rosettes are initially detected, enrichment twice to three times a week during successive 8-12 weeks allows progressive increase of the rosetting rate to approx. 10% (Vigan-Womas *et al.*, 2011).


- 1. Harvest *in vitro* culture at mature stages (trophozoite young schizont stages, 5 to 8% parasitaemia) in a conical Falcon centrifugation tube.
- 2. Centrifuge the culture, 10 min at 256 x g (1,200 rpm) in the Fisher Scientific Heraeus Multifuge at room temperature.
- 3. Discard the supernatant.
- 4. Resuspend the pellet in pre-warmed (37 °C) CCM, e.g. add 11 ml CCM to 1 ml pellet.
- 5. Dispense 2 ml ice-cold Ficoll in a 5 ml polystyrene round-bottom sterile tube (prepare six tubes for 1 ml cell pellet).
- 6. Carefully overlay 2 ml RBC suspension (step d) on top of the Ficoll (step e).
- 7. Centrifuge immediately in an Eppendorf Centrifuge 5702 for 30 sec, at 900 x g (2,400 rpm), room temperature. Do not use brake to decelerate. Rosette-forming parasites sediment with uninfected RBCs in the small pellet at the bottom of the tube.

- 8. Quickly aspirate the supernatant using a 1 ml aspiration sterile pipette connected to a vacuum pump.
- 9. Resuspend and pool the 6 pellets containing rosette-forming parasites in 4 ml prewarmed CCM.
- 10. Check the rosetting rate (see 3).
- 11. Repeat the procedure routinely twice a week.

C. Assessment of the rosetting rate

- 1. In a 1.4 ml matrix round bottom tube, add 100 μ l of CCM containing 10 μ g/ml Hoechst 33342 and 1-2 μ l of cell pellet under study.
- 2. Mix gently and incubate for 10 min at 37 °C in the dark.
- 3. Add 900 µl CCM.
- 4. Centrifuge 3 min at 256 x g (1,200 rpm), room temperature in the Fisher Scientific Heraeus Multifuge.
- 5. Remove the supernatant and resuspend the pellet in 40 µl pre-warmed CCM.
- 6. Place a 10 μl parasite suspension onto a microscope glass slide and cover with a coverslip.
- 7. Examine the sample under the microscope using a 40x or 100x objective. In case of Hoechst 33342-stained samples, use a fluorescence microscope and use both UV and bright-field light to visualise both iRBCs and RBC (Figure 1).

Figure 1. Visualisation of rosettes after enrichment on Ice-cold Ficoll. A. Light microscopy. B. UV and light microscopy of Hoechst 33342-stained preparations. C. Giemsa stained smear.

- 8. Count 100-200 iRBCs and score the number of iRBCs engaged in rosettes (i.e. trophozoite or schizont stages having bound two or more uninfected RBC).
- 9. Calculate the rosetting rate = (No. mature stage iRBC engaged in rosettes / No. mature stages) x 100.

- D. Selection of mature iRBCs (trophozoites to schizont) by using magnetic cell sorting (MACS)
 - 1. Harvest *in vitro* culture of rosettes forming parasites at mature trophozoite to schizont stages.
 - 2. Enrich for rosettes on ice-cold Ficoll (as described in section 2).
 - 3. Prepare 10 μ g/ml heparin or dextran sulphate in CCM and add 5 ml to the cell preparation to dissociate rosettes.
 - 4. Incubate 30 min at 37 °C (use an incubator with continuous gazing rather than waterbath).
 - 5. Check that all rosettes are disrupted by microscopic examination of an aliquot (see section 3).
 - 6. Place a CS column in the magnetic field of the VarioMACS magnetic separator and fill the column with 10 μg/ml heparin or dextran sulphate in CCM.
 - 7. Load the rosette-disrupted suspension on the column. Haemozoin-containing mature trophozoite and schizont stages are retained by the magnetic field.
 - 8. Wash twice the column with 10 ml 10 μg/ml heparin or dextran sulphate in CCM.
 - 9. Disconnect the column from the magnetic field and put it onto a 15 ml Falcon conical tube.
 - 10. Add 10 ml 10 μg/ml Heparin or Dextran sulphate in CCM on top of the column.
 - 11. Elute the retained iRBCs by flushing out the column using a 10 ml syringe filled with air.
 - 12. Centrifuge 10 min, 256 *x g* (1,200 rpm) in the Fisher Scientific Heraeus Multifuge at room temperature.
 - 13. Wash twice the pellet with RPMI medium supplemented with 1-2% Human AB⁺ serum (serum needed to avoid agglutination of iRBCs).
 - 14. Resuspend the pellet at 2% haematocrit in RPMI medium supplemented with 1-2% Human AB+ serum.
 - 15. Check parasitaemia of the purified iRBCs using a Giemsa-stained smear. The percentage of iRBCs should be >90%.
 - For additional experimental details concerning MACS purification of iRBCs with mature *P. falciparum* stages see (Moll *et al.*, 2008b).
- E. Rosette formation assay with RBCs labeled using lipophilic fluorescent probes.
 - Analysis of rosette-forming iRBC preference can be done by incubating various ratios of differentially labeled uninfected RBCs with iRBCs obtained from dissociated rosettes and concentrated by magnetic cell sorting (MACS) (Vigan-Womas *et al.*, 2012).
 - Red blood cells labeling with PKH dyes
 Perform all steps at room temperature (21 °C to 25 °C)

- a. Place approximately 5 x 10⁷ RBCs (i. e. 50 µl pelleted red cells or 500 µl red cells at 10% haematocrit in RPMI or CCM) in a 15 ml conical bottom polypropylene centrifuge tube.
- b. Add 5 ml RPMI 1640 medium (without serum).
- c. Centrifuge at 256 x g (1,200 rpm) in the Fisher Scientific Heraeus Multifuge, 5-10 min, room temperature.
- d. Carefully aspirate the supernatant, leaving no more than 25 µl supernatant on top of the pellet.
- e. Prepare a 1 µM PKH solution in diluent C provided by the manufacturer.
- f. Resuspend the RBC pellet in 500 µl diluent C by pipetting (do no vortex).
- g. Add 500 µl 1 µM PKH and immediately mix the sample by pipetting.
- h. Incubate 3 min at room temperature. Periodically invert the tube gently.
- i. Add 1 ml foetal bovine serum to stop the staining.
- j. Mix gently by inversion and incubate 1 min at room temperature.
- k. Add 2 ml CCM.
- I. Centrifuge at 256 x g (1,200 rpm) in the Fisher Scientific Heraeus Multifuge, 10 min, room temperature.
- m. Remove the supernatant and transfer the cell pellet in a new 15 ml conical tube.
- n. Wash twice with 10 ml CCM followed by centrifugation at 256 x g (1,200 rpm) in the Fisher Scientific Heraeus Multifuge, 10 min, room temperature.
- o. Resuspend the cell pellet at 2% haematocrit in RPMI medium, supplemented with 1-2% Human AB+ serum.
- p. Examine cell staining using fluorescence microscopy.

2. Rosette formation with PKH-labeled RBCs

- a. Use the procedure described in section 4 to obtain a pure (or highly enriched) preparation of iRBCs from rosetting parasites.
- b. Label iRBCs with 10 μg/ml Hoechst 33342 (see section 3).
- c. Resuspend the pellet at 2% haematocrit in RPMI medium supplemented with 1-2% Human AB⁺ serum.
- d. Dispense 40 µl iRBCs aliquots in 1.4 matrix round bottom tubes.
- e. Centrifuge at 178 x g (1,000 rpm) in the Fisher Scientific Heraeus Multifuge, 5 min, at RT and aspirate the supernatant.
- f. Prepare tubes containing varying ratios of PKH 67- or PKH26-labeled RBCs in RPMI medium with 1-2% Human AB+ serum (see section 5-a).
- g. Add 100 µl PKH 67- or PKH26-labeled RBCs to iRBCs pellet from step v.

- h. Mix and wash twice the RBC/iRBC suspension with 900 μ I CCM followed by centrifugation 5 min at 178 x g (1,000 rpm) in the Fisher Scientific Heraeus Multifuge, room temperature.
- i. Discard the supernatant.
- j. Resuspend the RBC/iRBC pellet in 200 µl CCM.
- k. Incubate for 1 h, at 37 °C (use an incubator rather than water-bath).
- I. Discard the supernatant and resuspend the pellet in 40 μl CCM.
- m. Place a 10 µl suspension onto a microscope glass slide and cover with a coverslip.
- n. Count the percentage of rosettes using a fluorescence microscope.
- o. Record the number of PKH 67- or PKH26-labeled RBCs engaged in rosettes (Figure 2).

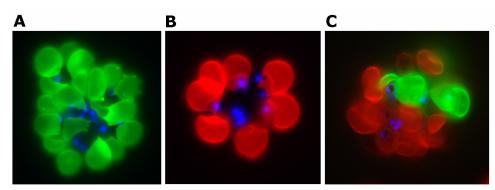


Figure 2: Rosette formation of VarO-iRBC with PKH-labeled recipient RBCs. A. Rosette formed upon incubation with PKH 67-labeled O+ RBCs. B. Rosette formed upon incubation with PKH 26-labeled A+ RBCs. C. Rosette formed upon incubation with a 1:1 mixture of PKH 67-labeled O+ and PKH 26-labeled A+ RBCs

Recipes

- 1. Complete culture medium (CCM, 500 ml)
 - 445 ml RPMI 1640
 - 5 ml Hypoxanthine solution (final concentration 100 μM)
 - 200 µl Gentamicin solution (final concentration 20 µg/ml)
 - 50 ml Human AB+ serum (final concentration 10%)
 - Sterilize using a 0.22 µm filter unit
 - Store at 4 °C or -20 °C for long-term storage
- 2. Stock solutions of heparin or dextran sulfate

Prepare a 10 mg/ml solution of heparin or dextran sulphate in sterile water (0.1 g + 10 ml water. Sterilize using a 0.22 μ m filter unit. Aliquot and store at -80 °C. Use each aliquot once (do not freeze-thaw)

Acknowledgments

This protocol was adapted from the following publications: Vigan-Womas *et al.* (2011) and Vigan-Womas *et al.* (2012). This work was supported by the Agence Nationale de la Recherche, contract ANR-07-MIME-021-0 (www.agence-nationale-recherche.fr/), and the 7th European Framework Program, FP7/2007-2013, (http://cordis.europa.eu/fp7/home_en.html) contract 242095, Evimalar.

References

- 1. Kirsten, M., Inge, L., Hedvig, P., Artur, Scherf., Mats, W. (2008a) Methods in Malaria Research, MRA/ ATCC and BioMalPar. Fifth Edition, section I, p. 4-7.
- 2. Kirsten, M., Inge, L., Hedvig, P., Artur, Scherf., Mats, W. (2008b) Methods in Malaria Research, MRA/ ATCC and BioMalPar. Fifth Edition, section IV p 31-44.
- 3. Kirsten, M., Inge, L., Hedvig, P., Artur, Scherf., Mats, W. (2008b) Methods in Malaria Research, Fifth Edition, section IV p 31-44, MRA/ ATCC and BioMalPar (www.biomalpar.org/updatedMethods_In_Malaria_Research_5thedition.pdf).
- 4. Maier, A. G. and Rug, M. (2013). *In vitro* Culturing *Plasmodium falciparum* Erythrocytic Stages. *Methods Mol Biol* 923: 3-15.
- Vigan-Womas, I., Guillotte, M., Juillerat, A., Hessel, A., Raynal, B., England, P., Cohen, J. H., Bertrand, O., Peyrard, T., Bentley, G. A., Lewit-Bentley, A. and Mercereau-Puijalon, O. (2012). <u>Structural basis for the ABO blood-group dependence of *Plasmodium falciparum* rosetting. *PLoS Pathog* 8(7): e1002781.
 </u>
- Vigan-Womas, I., Guillotte, M., Juillerat, A., Vallieres, C., Lewit-Bentley, A., Tall, A., Baril, L., Bentley, G. A. and Mercereau-Puijalon, O. (2011). <u>Allelic diversity of the *Plasmodium* falciparum erythrocyte membrane protein 1 entails variant-specific red cell surface epitopes</u>. *PLoS One* 6(1): e16544.