
LC/MS-based Detection of Hydroxyproline O-galactosyltransferase Activity

Mari Ogawa-Ohnishi and Yoshikatsu Matsubayashi*

Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan

*For correspondence: matsu@bio.nagoya-u.ac.jp

[Abstract] Arabinogalactan proteins (AGPs) are plant-specific extracellular glycoproteins regulating a variety of processes during growth and development. AGP biosynthesis involves O-galactosylation of hydroxyproline (Hyp) residues followed by a stepwise elongation of the complex sugar chains. The initial Hyp O-galactosylation is mediated by Hyp O-galactosyltransferase (HPGT) that catalyzes the transfer of a D-galactopyranosyl residue to the hydroxyl group of Hyp residues of peptides from the sugar donor UDP- α -D-galactose (Figure 1). Here we describe a LC/MS-based method for the detection of HPGT activity *in vitro*.

Figure 1. Reaction scheme for Hyp galactosylation by HPGT. HPGT catalyzes the addition of a D-galactopyranose from an UDP- α -D-Gal to the hydroxyl group of Hyp residues.

Materials and Reagents

1. 1-week-old *Arabidopsis* T-87 cells (50 g fresh weight)
2. Bio-Rad Protein Assay (Bio-Rad Laboratories, catalog number: 5000006JA)
3. 2 mM synthesized substrate peptide [e.g., (OAOSONT)₃S] [using standard Fmoc solid-phase synthesis chemistry on a 431A peptide synthesizer (Life Technologies)]
4. 2 mM Uridine 5'-diphosphogalactose disodium salt (Sigma-Aldrich, catalog number: U4500)
5. 1 M MOPS-KOH (pH 7.0)
6. 10 mM MnCl₂
7. 10% TX-100
8. 1% Formic acid
9. Acetonitrile (HPLC grade) containing 0.1% formic acid
10. Water (HPLC grade) containing 0.1% formic acid

11. Tris-HCl (pH 7.0)
12. MgCl₂
13. Dithiothreitol
14. Leupeptin
15. Phenylmethanesulfonyl fluoride
16. Sucrose
17. Extraction buffer (see Recipes)
18. Suspension buffer (see Recipes)

Equipment

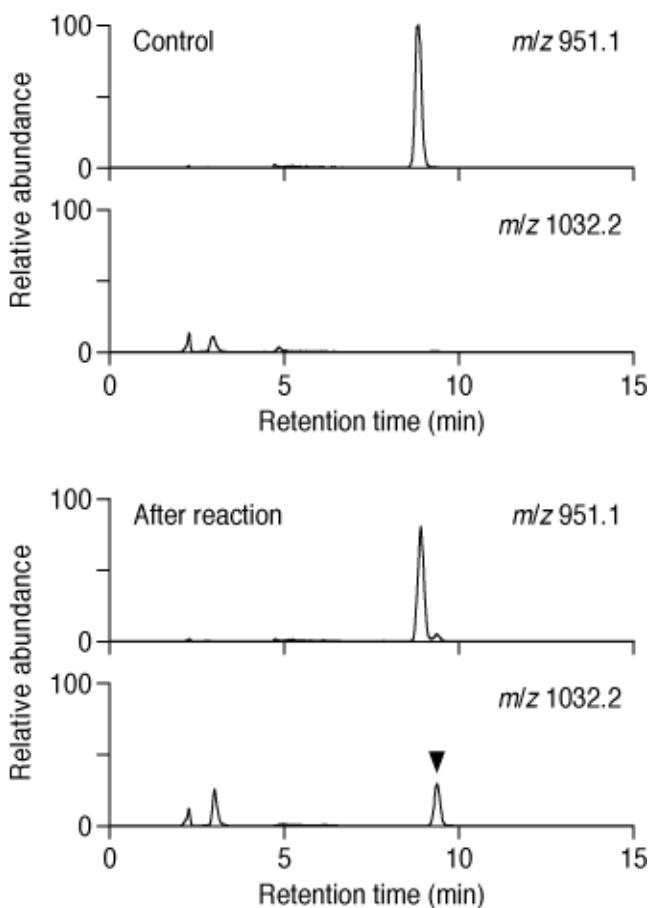
1. Waring blender
2. Miraclot (Merck Millipore Corporation, catalog number: 475855)
3. Ultracentrifuge
4. 30 °C incubator
5. Micro centrifuge
6. Semi-micro HPLC system (JASCO International Co., model: Micro21LC)
7. LCQ Deca XP-plus ESI ion-trap mass spectrometer (Thermo Fisher Scientific)
8. TSK-gel Amide-80 (3 µm) column (2 x 150 mm) (Tosoh Bioscience LLC, catalog number: 21865)

Procedure

- A. Preparation of *Arabidopsis* microsomal membranes
 1. *Arabidopsis* T-87 cells are maintained on a 1-week culture interval under continuous darkness at 22 °C with shaking at 120 rpm.
 2. Suspend 1-week-old *Arabidopsis* T-87 cell (50 g fresh weight) in 20 ml Extraction buffer.
 3. Cool off to 4 °C on ice.
 4. Homogenize at 20,000 rpm for 5 min at 4 °C in a Waring blender.
 5. Cool off to 4 °C on ice.
 6. Filter the slurry through two layers of Miraclot.
 7. Centrifuge the filtrate at 3,000 x g for 15 min at 4 °C.
 8. Centrifuge the supernatant at 100,000 x g for 30 min at 4 °C.
 9. Suspend the pellet (microsomal membranes: approximately 150 µg/µl) in 500 µl Suspension buffer by gentle pipetting.
 10. Determine the protein concentration by conventional Bradford assay according to the manufacturer's protocol (Bio-Rad Protein Assay).

B. Hyp O-galactosyltransferase activity assay

1. Set up 20 μ l HPGT assay reactions in 0.5 ml microcentrifuge tube as follows.


HPGT assay components	Amount per reaction
1 M MOPS-KOH (pH 7.0)	2 μ l
2 mM UDP- α -D-galactose	5 μ l
10 mM MnCl ₂	2 μ l
10% TX-100	2 μ l
2 mM substrate peptide	1 μ l
<i>Arabidopsis</i> T-87 microsomal membranes	30 μ g protein equivalent
Water	Total 20 μ l

2. Incubate at 30 °C, 1 h.
3. Add 2 μ l 1% formic acid to stop reaction.
4. Add 80 μ l acetonitrile.
5. Centrifuge at 20,000 $\times g$ for 5 min.

C. LC/MS analysis

10 μ l aliquots of the assay solution were analyzed by LC-MS using a micro HPLC (high pressure liquid chromatography) system connected to an LCQ Deca XP-plus ESI ion-trap mass spectrometer. Chromatographic separation is performed by normal-phase HPLC on a TSK-gel Amide-80 (3 μ m) column (2 x 150 mm).

1. The mobile phase is composed of HPLC grade water containing 0.1% formic acid (eluent A) and HPLC grade acetonitrile containing 0.1% formic acid (eluent B). The column temperature is maintained at 25 °C.
2. The HPLC flow rate is 100 μ l/min, and the elution gradient was 60 to 30% B over 15 min.
3. The HPLC eluate was introduced into an electrospray ionization (ESI) ion-trap mass spectrometer in the positive ionization mode.
4. MS source parameters are as follows [e.g., (OAOSOT)₃S peptide]:
 - a. Capillary temperature: 200 °C
 - b. Capillary voltage: 42 V
 - c. Source voltage: 5 kV
 - d. Source current: 8.5 μ A
 - e. Sheath gas flow: 50
 - f. Aux gas flow: 0
 - g. Sweep gas flow: 0
 - h. The mass range: *m/z* 500-2,000
5. The mass spectra are obtained by selected ion monitoring. [e.g., (OAOSOT)₃S: *m/z* 951.1, Galactosylated product: *m/z* 1032.2] (Figure 2).

Figure 2. Selected ion chromatogram of substrate peptide and the galactosylated product. Substrate peptide was incubated with solubilized membrane fractions in the presence of UDP- α -D-galactose, then analyzed by LC-MS with selected ion monitoring of the substrate (m/z 951.1) and the galactosylated product (m/z 1032.2).

Recipes

1. Extraction buffer (prepare freshly and keep on ice)
25 mM Tris-HCl (pH 7.0)
10 mM MgCl₂
2 mM dithiothreitol
2 μ M leupeptin
2 mM phenylmethanesulfonyl fluoride
250 mM sucrose
2. Suspension buffer
10 mM Tris-HCl (pH 7.0)
250 mM sucrose

Acknowledgments

This is the detailed protocol for the detection of HPGT activity described by Ogawa-Ohnishi and Matsubayashi (2015). This research was supported by a Grant-in-Aid for Scientific Research (S) from the Ministry of Education, Culture, Sports, Science, and Technology (No. 25221105).

References

1. Ogawa-Ohnishi, M. and Matsubayashi, Y. (2015). [Identification of three potent hydroxyproline O-galactosyltransferases in *Arabidopsis*](#). *Plant J* 81(5): 736-746.
2. Ogawa-Ohnishi, M., Matsushita, W. and Matsubayashi, Y. (2013). [Identification of three hydroxyproline O-arabinosyltransferases in *Arabidopsis thaliana*](#). *Nat Chem Biol* 9(11): 726-730.