

Alcian Blue - Alizarin Red Staining of Mouse Skeleton

Peichuan Zhang^{1, 2*}

¹Department of Biology, The Pennsylvania State University, University Park, PA, USA

²Present Address: Department of Biochemistry and Biophysics, University of California, San

Francisco, CA, USA

*For correspondence: peichuan.zhang@ucsf.edu

[Abstract] Our lab has used the Alcian blue-Alizarin red staining method (Hanken and Wassersug, 1981) with certain modifications to characterize skeleton deformities in mice lacking Pek/Perk, encoding a translational control elF2alpha kinase (Zhang *et al.*, 2002). Our protocol to conduct this experiment is described here.

Materials and Reagents

- 1. Neural buffered formalin (Sigma-Aldrich, catalog number: HT5014)
- 2. Alcian blue 8GX (Sigma-Aldrich, catalog number: A5268)
- 3. Trypsin (Sigma-Aldrich, catalog number: T1426)
- 4. Saturated sodium borate (Sigma-Aldrich, catalog number: S9640)
- 5. Alizarin red (Sigma-Aldrich, catalog number: A3882)
- 6. Thymol (EM Life Science, catalog number: TX0615-1)
- 7. Ethanol
- 8. Glacial acetic acid
- 9. Potassium hydroxide
- 10. Glycerol
- 11. KOH
- 12. Trypsin solution (see Recipes)

Equipment

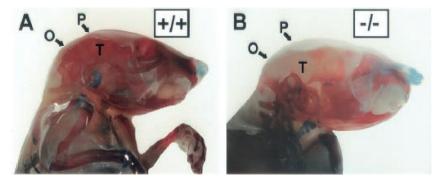
1. Conical tube

Procedure

A. Adults:

1. Fix mouse skeleton in 10% neutral buffered formalin for at least 24 h.

- 2. Rinse the sample in ddH₂O O/N (1 h for embryos) with gentle shaking, and post-fix it in 70% ethanol.
 - Note: At this point, samples can be stored in 70% ethanol for a long period.
- 3. Remove skins and internal organs carefully from the sample.
 - Note: Remove all skins, even those on the small toes.
- 4. Stain the sample with 0.02% Alcian blue 8GX (prepared in ethanol/ glacial acetic acid, 7: 3) for 1 to 2 days.
 - Note: Cartilage tissues will be stained blue.
- 5. Wash the sample with plain ethanol/ glacial acetic acid (7:3) for 1 h.
- 6. Soak the sample in 100% ethanol O/N, and then in ddH_2O for 1 to 2 days.
- 7. Treat the sample with 1.0% trypsin (prepared in water solution containing 30% saturated sodium borate) O/N.
- 8. Should limp and blue cartilage be readily observed at this point, proceed to stain the sample with Alizarin red (prepared in 0.5% KOH) O/N.
 - Note: Add enough (no specific amount) saturated Alizarin red until the solution appears dark purple. Mineralized bones will be stained red.
- 9. Treat the sample with a gradient series of 0.5% KOH/ glycerol (*i.e.*, 2:1, 1:1, 1:2 and 100% glycerol, 2 days for each step), and store it in glycerol with a crystal of thymol.


B. Embryos:

- 1. A similar protocol can be used to stain embryos. To do this, fix embryos in 90% ethanol for at least 1 week.
- 2. Treat the sample with 0.01% Alcian blue 8GX for 3 days, and then perform rehydration through a gradient series of ethanol (70% ethanol, 2 to 3 h, twice; 40% ethanol, 2 to 3 h; 15% ethanol, 2 to 3 h; ddH₂O, until the sample sinks to the bottom of a conical tube). Treat the sample further with fresh 1% KOH for 1 to 2 days until it becomes clear.
- 3. Treat the sample with 0.001% Alizarin red for 2 to 3 days until the bone becomes purple.
- 4. Rinse the sample ~ 3 times in 1% KOH, several hours each time.
- 5. Treat the sample through a gradient series of glycerol-KOH (20% glycerol/ 1% KOH, 24 h; 50% glycerol/ 1% KOH, 24 h; 80% glycerol/ 1% KOH, 24 h; 100% glycerol, 24 h x 2).

2

Representative data

Figure 1. This figure is adapted from the original (Zhang *et al., 2002***).** Shown here is Alizarin Red (mineralized bone) and Alcian Blue (cartilage) skeletal staining of 18-day-old wild-type A and *Perk*^{-/-} mutant mice B. The mineralization of the flat bones of the skull (P, parietal; O, occipital; T, temporal) is greatly reduced in the *Perk*^{-/-} mutant mouse.

Recipes

Trypsin solution
1.0% trypsin
30% saturated sodium borate
H₂O

Acknowledgments

This protocol was adapted from previously described work by Hanken and Wassersug (Hanken and Wassersug, 1981). PZ was supported by a research assistantship in the Cavener lab at the Pennsylvania State University.

References

- 1. Hanken, J. and Wassersug, R. (1981). The visible skeleton. Funct Photogr 16(4): 22-26.
- Zhang, P., McGrath, B., Li, S., Frank, A., Zambito, F., Reinert, J., Gannon, M., Ma, K., McNaughton, K. and Cavener, D. R. (2002). <u>The PERK eukaryotic initiation factor 2 alpha</u> <u>kinase is required for the development of the skeletal system, postnatal growth, and the</u> <u>function and viability of the pancreas</u>. *Mol Cell Biol* 22(11): 3864-3874.