

Centrifuge Microscopy to Analyze the Sedimentary Movements of Amyloplasts

Masatsugu Toyota¹, Norifumi Ikeda², Masao Tasaka³ and Miyo Terao Morita^{4*}

¹Department of Botany, University of Wisconsin, Madison, USA; ²Mechatronics Technology Development Center, NSK Ltd., Fujisawa, Japan; ³Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Japan; ⁴Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan

*For correspondence: mimorita@agr.nagoya-u.ac.jp

[Abstract] A centrifuge microscope (CMS) functionally consists of a centrifuge producing a centrifugal force (hypergravity condition) and a microscope making an enlarged image of an object. This combination of equipment allows live-cell imaging during centrifugation. We have developed a new CMS (NSK Ltd.) to observe movements of the plant organelles such as amyloplasts, under hypergravity conditions (Toyota *et al.*, 2013). This CMS is distinct from previously designed CMSs in terms of spatio-temporal resolution, ease of use and compactness. Here, we show a quick protocol to prepare a specimen of *Arabidopsis* inflorescence stem, use the CMS, obtain imaging data and analyze them using a single tracking method.

Materials and Reagents

- 1. Arabidopsis thaliana inflorescence stems
- 2. MS salt mixture (Wako Pure Chemical Industries, catalog number: 392-00591)
- 3. 1% (w/v) sucrose
- 4. 0.05% (w/v) MES
- 5. 0.1% (w/v) agar
- 6. Growth media (see Recipes)

Equipment

- 1. Fine tweezers
- 2. Scissors
- 3. Razor blade (Electron Microscopy Sciences, catalog number: 72000)
- 4. Kimwipes
- 5. Aluminum chamber (custom built) (NSK Ltd.)
- 6. Silicone rubber (thickness: 0.5 mm) (AS ONE Corporation, catalog number: 6-611-01)
- 7. Round cover glass (diameter: 12 mm) (Matsunami Glass, catalog number: CO12001)

8. CMS system (Figure 1, not commercially available) (NSK Ltd., http://www.nsk.com/)
CMS is a newly designed compact centrifuge microscope, 30 cm in height and 20 cm in diameter. CMS consists of a direct-drive motor (NSK Ltd., MEGATORQUE MOTOR™, model: M-PS1006KN002) and optics including a 50x objective lens with a working distance of 18 mm (SLMPLN 50x, 0.35 NA, OLYMPUS), LED light source (SCHOTT MORITEX Corporation, model: MEBL-CW25) and a CCD camera (SENSOR TECHNOLOGY, model: STC172C).

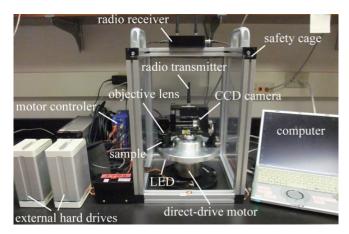


Figure 1. Overview of the CMS system

 Windows computer [minimum computer requirements: Windows® XP or later, Pentium M 778 (1.6 GHz), RAM 1024 MB or higher]

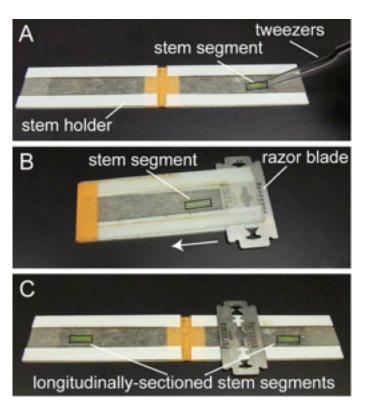
Note: To install the software below, Windows computers are highly recommended.

Software

 MEGATORQUE MOTOR™ controller (EDC megaterm software) (NSK Ltd., http://www.nsk.com/)

Note: This is free software to control the motor and is available only for Windows.

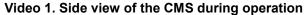
- 2. Video capture software (COREL, http://www.corel.com/)

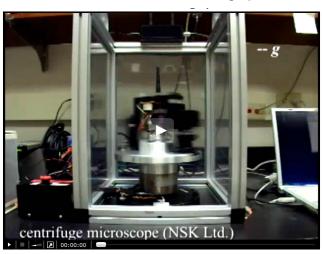

 Note: You can use any video capture soft/hardware that converts analog video signal into digital signal and stores the data in a computer.
- 3. G-Track spot-tracking software (G-Angstrom, http://www.gangstrom.com/eng/products/index.php)

Note: This is a piece of commercial software to trace fluorescence/bright spots and available only for Windows.

Procedure

- 1. Excise an approximately 1-cm-long segment of an inflorescence stem at 1-2 cm from the apex of the primary stem.
- 2. Place the stem segment onto a hand-made stem holder and slide a razor blade to split the stem longitudinally (Figure 2) (Saito *et al.*, 2005; Nakamura *et al.*, 2011).




Figure 2. Making longitudinal sections of *Arabidopsis* **inflorescence stems.** A. Place the stem segment onto a hand-made stem holder. B. Close the holder and slide a razor blade in the direction of the arrow. C. Open the holder and retrieve the longitudinally-sectioned stem segments.

- 3. Drop a small amount of growth medium onto the sectioned side of the stem to prevent the tissue from drying out.
- 4. Keep the sectioned side up and put this segment into a slit in a round silicone rubber sheet (0.5 mm deep) on the bottom glass of an aluminum chamber (Toyota *et al.*, 2013).
- 5. Pour growth medium into this slit, put a cover glass onto the silicone rubber and remove spilt growth media with Kimwipes.
- 6. Mount the aluminum chamber in a holder under an objective lens of the CMS.
- 7. Turn on the LED light to illuminate the specimen and the CCD camera to acquire images.

- 8. Acquired bright-field images are transmitted through a radio system and shown on the video capture software in the computer.
- 9. Adjust focus and field of view in the CMS while monitoring the computer.
- 10. Set a centrifugal acceleration between 0 to 33 x g in the MEGATORQUE MOTOR™ controller of the computer. In case of wild-type *Arabidopsis* stems, maximum gravitropic responses are seen at 10 x g.
- 11. Start video capture and run MEGATORQUE MOTOR™ (Videos 1 and 2).

Video 2. Top view of the CMS during operation

- 12. Monitor real-time images (30 frames per sec) on the computer during centrifugation.
- 13. Stop the motor and video capture and save the images as an avi file in the computer.
- 14. Open this file in G-Track spot-tracking software.

15. This software automatically recognizes many white or black spots (amyloplasts) and traces them (Video 3; Figure 2). If necessary, you can modify image parameters such as gain or contrast, and invert brightness.

Video 3. Single-particle tracking analysis of amyloplast movement during centrifugation at $10 \times g$ (Toyota *et al.*, 2013). Most amyloplasts are automatically recognized by the G-Track spot-tracking software and traced while they are recognized as white or black spots. Please note that this software does not precisely recognize an amyloplast (spot) with weak contrast nor aggregated amyloplasts. Video duration = 152 s $(8 \times speed)$.

- 16. Run the tracking program. You can automatically get data [i.e., mean square displacement (MSD) of an amyloplast, Table 1] and then calculate velocity and displacement.
- 17. Export the data to Excel/CSV file (Table 1).

Representative data

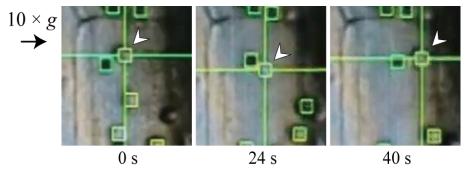


Figure 3. Representative tracking image (Toyota et al., 2013). Movement of an amyloplast

(arrow head) is successfully traced by the G-Track spot-tracking software during centrifugation.

Table 1. Mean square desplacement (MSD) of the amylplast for 1 sec of centrifugation.

MSD of the amyloplast traced in Figure 3 is automatically calculated by the tracking program. X, Y and 2D denote movement in the horizontal (10 x g) and vertical directions and in a two-dimensional (2D) plane, respectively. For downloading data, please click the image below.

Time (s) X MSD (nm^2) Y MSD (nm^2) 2 D MSD (nm^2) 2 0 0 0 0 3 0.03 6870.8873 10532.905 17403.792 4 0.06 9749.6869 14827.617 24577.304 5 0.09 11313.81 17081.064 28394.874 6 0.12 12568.488 19455.514 32024.003 7 0.15 13963.539 21543.437 35506.977 8 0.18 15569.045 23321.761 38890.807 9 0.21 17541.118 26335.084 43876.202 10 0.24 19432.915 27944.374 47377.289 11 0.27 21403.929 30141.126 51545.055 12 0.3 22938.853 32296.456 55235.308 13 0.33 24300.065 33497.584 57797.648 14 0.36 26517.51 36392.242 62909.751 15 0.39 28825.892 38763.712	4	Α	В	С	D
3 0.03 6870.8873 10532.905 17403.792 4 0.06 9749.6869 14827.617 24577.304 5 0.09 11313.81 17081.064 28394.874 6 0.12 12568.488 19455.514 32024.003 7 0.15 13963.539 21543.437 35506.977 8 0.18 15569.045 23321.761 38890.807 9 0.21 17541.118 26335.084 43876.202 10 0.24 19432.915 27944.374 47377.289 11 0.27 21403.929 30141.126 51545.055 12 0.3 22938.853 32296.456 55235.308 13 0.33 24300.065 33497.584 57797.648 14 0.36 26517.51 36392.242 62909.751 15 0.39 28825.892 38763.712 67589.604 16 0.42 30869.982 40700.067 71570.049 17 0.45 327	1	Time (s)	X MSD (nm^2)	Y MSD (nm^2)	2D MSD (nm^2)
4 0.06 9749.6869 14827.617 24577.304 5 0.09 11313.81 17081.064 28394.874 6 0.12 12568.488 19455.514 32024.003 7 0.15 13963.539 21543.437 35506.977 8 0.18 15569.045 23321.761 38890.807 9 0.21 17541.118 26335.084 43876.202 10 0.24 19432.915 27944.374 47377.289 11 0.27 21403.929 30141.126 51545.055 12 0.3 22938.853 32296.456 55235.308 13 0.33 24300.065 33497.584 57797.648 14 0.36 26517.51 36392.242 62909.751 15 0.39 28825.892 38763.712 67589.604 16 0.42 30869.982 40700.067 71570.049 17 0.45 32780.855 43296.53 76077.385 18 0.48 342	2	0	0	0	0
5 0.09 11313.81 17081.064 28394.874 6 0.12 12568.488 19455.514 32024.003 7 0.15 13963.539 21543.437 35506.977 8 0.18 15569.045 23321.761 38890.807 9 0.21 17541.118 26335.084 43876.202 10 0.24 19432.915 27944.374 47377.289 11 0.27 21403.929 30141.126 51545.055 12 0.3 22938.853 32296.456 55235.308 13 0.33 24300.065 33497.584 57797.648 14 0.36 26517.51 36392.242 62909.751 15 0.39 28825.892 38763.712 67589.604 14 0.36 26517.51 36392.242 62909.751 15 0.39 28825.892 38763.712 67589.604 14 0.36 26517.51 36392.242 62909.751 15 0.39 288	3	0.03	6870.8873	10532.905	17403.792
6 0.12 12568.488 19455.514 32024.003 7 0.15 13963.539 21543.437 35506.977 8 0.18 15569.045 23321.761 38890.807 9 0.21 17541.118 26335.084 43876.202 10 0.24 19432.915 27944.374 47377.289 11 0.27 21403.929 30141.126 51545.055 12 0.3 22938.853 32296.456 55235.308 13 0.33 24300.065 33497.584 57797.648 14 0.36 26517.51 36392.242 62909.751 15 0.39 28825.892 38763.712 67589.604 16 0.42 30869.982 40700.067 71570.049 17 0.45 32780.855 43296.53 76077.385 18 0.48 34262.313 45199.287 79461.6 19 0.51 36403.245 47060.662 83463.907 20 0.54 38	4	0.06	9749.6869	14827.617	24577.304
7 0.15 13963.539 21543.437 35506.977 8 0.18 15569.045 23321.761 38890.807 9 0.21 17541.118 26335.084 43876.202 10 0.24 19432.915 27944.374 47377.289 11 0.27 21403.929 30141.126 51545.055 12 0.3 22938.853 32296.456 55235.308 13 0.33 24300.065 33497.584 57797.648 14 0.36 26517.51 36392.242 62909.751 15 0.39 28825.892 38763.712 67589.604 16 0.42 30869.982 40700.067 71570.049 17 0.45 32780.855 43296.53 76077.385 18 0.48 34262.313 45199.287 79461.6 19 0.51 36403.245 47060.662 83463.907 20 0.54 38598.231 50664.354 89262.585 21 0.57 4	5	0.09	11313.81	17081.064	28394.874
8 0.18 15569.045 23321.761 38890.807 9 0.21 17541.118 26335.084 43876.202 10 0.24 19432.915 27944.374 47377.289 11 0.27 21403.929 30141.126 51545.055 12 0.3 22938.853 32296.456 55235.308 13 0.33 24300.065 33497.584 57797.648 14 0.36 26517.51 36392.242 62909.751 15 0.39 28825.892 38763.712 67589.604 16 0.42 30869.982 40700.067 71570.049 17 0.45 32780.855 43296.53 76077.385 18 0.48 34262.313 45199.287 79461.6 19 0.51 36403.245 47060.662 83463.907 20 0.54 38598.231 50664.354 89262.585 21 0.57 40776.465 52142.989 92919.454 22 0.6 4	6	0.12	12568.488	19455.514	32024.003
9 0.21 17541.118 26335.084 43876.202 10 0.24 19432.915 27944.374 47377.289 11 0.27 21403.929 30141.126 51545.055 12 0.3 22938.853 32296.456 55235.308 13 0.33 24300.065 33497.584 57797.648 14 0.36 26517.51 36392.242 62909.751 15 0.39 28825.892 38763.712 67589.604 16 0.42 30869.982 40700.067 71570.049 17 0.45 32780.855 43296.53 76077.385 18 0.48 34262.313 45199.287 79461.6 19 0.51 36403.245 47060.662 83463.907 20 0.54 38598.231 50664.354 89262.585 21 0.57 40776.465 52142.989 92919.454 22 0.6 42924.119 54301.86 97225.978 23 0.63 45106.729 56725.471 101832.2 24 0.66 46994.137 58596.968 105591.1 25 0.69 49352.392 61639.01 110991.4 26 0.72 51931.826 64626.378 116558.2 27 0.75 54316.798 66399.085 120715.88 28 0.78 56531.071 69203.688 125734.76 29 0.81 58549.965 70777.191 129327.16 30 0.84 61294.082 72188.885 133482.97 31 0.87 64151.522 75361.508 139513.03 32 0.9 66568.19 76730.799 143298.99 33 0.93 69008.021 78713.241 147721.26 34 0.96 71401.731 81138.789 152540.52 35 0.99 73710.912 82665.399 156376.31	7	0.15	13963.539	21543.437	35506.977
10 0.24 19432.915 27944.374 47377.289 11 0.27 21403.929 30141.126 51545.055 12 0.3 22938.853 32296.456 55235.308 13 0.33 24300.065 33497.584 57797.648 14 0.36 26517.51 36392.242 62909.751 15 0.39 28825.892 38763.712 67589.604 16 0.42 30869.982 40700.067 71570.049 17 0.45 32780.855 43296.53 76077.385 18 0.48 34262.313 45199.287 79461.6 19 0.51 36403.245 47060.662 83463.907 20 0.54 38598.231 50664.354 89262.585 21 0.57 40776.465 52142.989 92919.454 22 0.6 42924.119 54301.86 97225.978 23 0.63 45106.729 56725.471 101832.2 24 0.66 4	8	0.18	15569.045	23321.761	38890.807
11 0.27 21403.929 30141.126 51545.055 12 0.3 22938.853 32296.456 55235.308 13 0.33 24300.065 33497.584 57797.648 14 0.36 26517.51 36392.242 62909.751 15 0.39 28825.892 38763.712 67589.604 16 0.42 30869.982 40700.067 71570.049 17 0.45 32780.855 43296.53 76077.385 18 0.48 34262.313 45199.287 79461.6 19 0.51 36403.245 47060.662 83463.907 20 0.54 38598.231 50664.354 89262.585 21 0.57 40776.465 52142.989 92919.454 22 0.6 42924.119 54301.86 97225.978 23 0.63 45106.729 56725.471 101832.2 24 0.66 46994.137 58596.968 105591.1 25 0.69 49	9	0.21	17541.118	26335.084	43876.202
12 0.3 22938.853 32296.456 55235.308 13 0.33 24300.065 33497.584 57797.648 14 0.36 26517.51 36392.242 62909.751 15 0.39 28825.892 38763.712 67589.604 16 0.42 30869.982 40700.067 71570.049 17 0.45 32780.855 43296.53 76077.385 18 0.48 34262.313 45199.287 79461.6 19 0.51 36403.245 47060.662 83463.907 20 0.54 38598.231 50664.354 89262.585 21 0.57 40776.465 52142.989 92919.454 22 0.6 42924.119 54301.86 97225.978 23 0.63 45106.729 56725.471 101832.2 24 0.66 46994.137 58596.968 105591.1 25 0.69 49352.392 61639.01 110991.4 26 0.72 5193	10	0.24	19432.915	27944.374	47377.289
13 0.33 24300.065 33497.584 57797.648 14 0.36 26517.51 36392.242 62909.751 15 0.39 28825.892 38763.712 67589.604 16 0.42 30869.982 40700.067 71570.049 17 0.45 32780.855 43296.53 76077.385 18 0.48 34262.313 45199.287 79461.6 19 0.51 36403.245 47060.662 83463.907 20 0.54 38598.231 50664.354 89262.585 21 0.57 40776.465 52142.989 92919.454 22 0.6 42924.119 54301.86 97225.978 23 0.63 45106.729 56725.471 101832.2 24 0.66 46994.137 58596.968 105591.1 25 0.69 49352.392 61639.01 110991.4 26 0.72 51931.826 64626.378 116558.2 27 0.75 5431	11	0.27	21403.929	30141.126	51545.055
14 0.36 26517.51 36392.242 62909.751 15 0.39 28825.892 38763.712 67589.604 16 0.42 30869.982 40700.067 71570.049 17 0.45 32780.855 43296.53 76077.385 18 0.48 34262.313 45199.287 79461.6 19 0.51 36403.245 47060.662 83463.907 20 0.54 38598.231 50664.354 89262.585 21 0.57 40776.465 52142.989 92919.454 22 0.6 42924.119 54301.86 97225.978 23 0.63 45106.729 56725.471 101832.2 24 0.66 46994.137 58596.968 105591.1 25 0.69 49352.392 61639.01 110991.4 26 0.72 51931.826 64626.378 116558.2 27 0.75 54316.798 66399.085 120715.88 28 0.78 5653	12	0.3	22938.853	32296.456	55235.308
15 0.39 28825.892 38763.712 67589.604 16 0.42 30869.982 40700.067 71570.049 17 0.45 32780.855 43296.53 76077.385 18 0.48 34262.313 45199.287 79461.6 19 0.51 36403.245 47060.662 83463.907 20 0.54 38598.231 50664.354 89262.585 21 0.57 40776.465 52142.989 92919.454 22 0.6 42924.119 54301.86 97225.978 23 0.63 45106.729 56725.471 101832.2 24 0.66 46994.137 58596.968 105591.1 25 0.69 49352.392 61639.01 110991.4 26 0.72 51931.826 64626.378 116558.2 27 0.75 54316.798 66399.085 120715.88 28 0.78 56531.071 69203.688 125734.76 29 0.81 585	13	0.33	24300.065	33497.584	57797.648
16 0.42 30869.982 40700.067 71570.049 17 0.45 32780.855 43296.53 76077.385 18 0.48 34262.313 45199.287 79461.6 19 0.51 36403.245 47060.662 83463.907 20 0.54 38598.231 50664.354 89262.585 21 0.57 40776.465 52142.989 92919.454 22 0.6 42924.119 54301.86 97225.978 23 0.63 45106.729 56725.471 101832.2 24 0.66 46994.137 58596.968 105591.1 25 0.69 49352.392 61639.01 110991.4 26 0.72 51931.826 64626.378 116558.2 27 0.75 54316.798 66399.085 120715.88 28 0.78 56531.071 69203.688 125734.76 29 0.81 58549.965 70777.191 129327.16 30 0.84 612	14	0.36	26517.51	36392.242	62909.751
17 0.45 32780.855 43296.53 76077.385 18 0.48 34262.313 45199.287 79461.6 19 0.51 36403.245 47060.662 83463.907 20 0.54 38598.231 50664.354 89262.585 21 0.57 40776.465 52142.989 92919.454 22 0.6 42924.119 54301.86 97225.978 23 0.63 45106.729 56725.471 101832.2 24 0.66 46994.137 58596.968 105591.1 25 0.69 49352.392 61639.01 110991.4 26 0.72 51931.826 64626.378 116558.2 27 0.75 54316.798 66399.085 120715.88 28 0.78 56531.071 69203.688 125734.76 29 0.81 58549.965 70777.191 129327.16 30 0.84 61294.082 72188.885 133482.97 31 0.87 641	15	0.39	28825.892	38763.712	67589.604
18 0.48 34262.313 45199.287 79461.6 19 0.51 36403.245 47060.662 83463.907 20 0.54 38598.231 50664.354 89262.585 21 0.57 40776.465 52142.989 92919.454 22 0.6 42924.119 54301.86 97225.978 23 0.63 45106.729 56725.471 101832.2 24 0.66 46994.137 58596.968 105591.1 25 0.69 49352.392 61639.01 110991.4 26 0.72 51931.826 64626.378 116558.2 27 0.75 54316.798 66399.085 120715.88 28 0.78 56531.071 69203.688 125734.76 29 0.81 58549.965 70777.191 129327.16 30 0.84 61294.082 72188.885 133482.97 31 0.87 64151.522 75361.508 139513.03 32 0.9 665	16	0.42	30869.982	40700.067	71570.049
19 0.51 36403.245 47060.662 83463.907 20 0.54 38598.231 50664.354 89262.585 21 0.57 40776.465 52142.989 92919.454 22 0.6 42924.119 54301.86 97225.978 23 0.63 45106.729 56725.471 101832.2 24 0.66 46994.137 58596.968 105591.1 25 0.69 49352.392 61639.01 110991.4 26 0.72 51931.826 64626.378 116558.2 27 0.75 54316.798 66399.085 120715.88 28 0.78 56531.071 69203.688 125734.76 29 0.81 58549.965 70777.191 129327.16 30 0.84 61294.082 72188.885 133482.97 31 0.87 64151.522 75361.508 139513.03 32 0.9 66568.19 76730.799 143298.99 33 0.93 69	17	0.45	32780.855	43296.53	76077.385
20 0.54 38598.231 50664.354 89262.585 21 0.57 40776.465 52142.989 92919.454 22 0.6 42924.119 54301.86 97225.978 23 0.63 45106.729 56725.471 101832.2 24 0.66 46994.137 58596.968 105591.1 25 0.69 49352.392 61639.01 110991.4 26 0.72 51931.826 64626.378 116558.2 27 0.75 54316.798 66399.085 120715.88 28 0.78 56531.071 69203.688 125734.76 29 0.81 58549.965 70777.191 129327.16 30 0.84 61294.082 72188.885 133482.97 31 0.87 64151.522 75361.508 139513.03 32 0.9 66568.19 76730.799 143298.99 33 0.93 69008.021 78713.241 147721.26 34 0.96 71	18	0.48	34262.313	45199.287	79461.6
21 0.57 40776.465 52142.989 92919.454 22 0.6 42924.119 54301.86 97225.978 23 0.63 45106.729 56725.471 101832.2 24 0.66 46994.137 58596.968 105591.1 25 0.69 49352.392 61639.01 110991.4 26 0.72 51931.826 64626.378 116558.2 27 0.75 54316.798 66399.085 120715.88 28 0.78 56531.071 69203.688 125734.76 29 0.81 58549.965 70777.191 129327.16 30 0.84 61294.082 72188.885 133482.97 31 0.87 64151.522 75361.508 139513.03 32 0.9 66568.19 76730.799 143298.99 33 0.93 69008.021 78713.241 147721.26 34 0.96 71401.731 81138.789 152540.52 35 0.99 73	19	0.51	36403.245	47060.662	83463.907
22 0.6 42924.119 54301.86 97225.978 23 0.63 45106.729 56725.471 101832.2 24 0.66 46994.137 58596.968 105591.1 25 0.69 49352.392 61639.01 110991.4 26 0.72 51931.826 64626.378 116558.2 27 0.75 54316.798 66399.085 120715.88 28 0.78 56531.071 69203.688 125734.76 29 0.81 58549.965 70777.191 129327.16 30 0.84 61294.082 72188.885 133482.97 31 0.87 64151.522 75361.508 139513.03 32 0.9 66568.19 76730.799 143298.99 33 0.93 69008.021 78713.241 147721.26 34 0.96 71401.731 81138.789 152540.52 35 0.99 73710.912 82665.399 156376.31	20	0.54	38598.231	50664.354	89262.585
23 0.63 45106.729 56725.471 101832.2 24 0.66 46994.137 58596.968 105591.1 25 0.69 49352.392 61639.01 110991.4 26 0.72 51931.826 64626.378 116558.2 27 0.75 54316.798 66399.085 120715.88 28 0.78 56531.071 69203.688 125734.76 29 0.81 58549.965 70777.191 129327.16 30 0.84 61294.082 72188.885 133482.97 31 0.87 64151.522 75361.508 139513.03 32 0.9 66568.19 76730.799 143298.99 33 0.93 69008.021 78713.241 147721.26 34 0.96 71401.731 81138.789 152540.52 35 0.99 73710.912 82665.399 156376.31	21	0.57	40776.465	52142.989	92919.454
24 0.66 46994.137 58596.968 105591.1 25 0.69 49352.392 61639.01 110991.4 26 0.72 51931.826 64626.378 116558.2 27 0.75 54316.798 66399.085 120715.88 28 0.78 56531.071 69203.688 125734.76 29 0.81 58549.965 70777.191 129327.16 30 0.84 61294.082 72188.885 133482.97 31 0.87 64151.522 75361.508 139513.03 32 0.9 66568.19 76730.799 143298.99 33 0.93 69008.021 78713.241 147721.26 34 0.96 71401.731 81138.789 152540.52 35 0.99 73710.912 82665.399 156376.31	22	0.6	42924.119	54301.86	97225.978
25 0.69 49352.392 61639.01 110991.4 26 0.72 51931.826 64626.378 116558.2 27 0.75 54316.798 66399.085 120715.88 28 0.78 56531.071 69203.688 125734.76 29 0.81 58549.965 70777.191 129327.16 30 0.84 61294.082 72188.885 133482.97 31 0.87 64151.522 75361.508 139513.03 32 0.9 66568.19 76730.799 143298.99 33 0.93 69008.021 78713.241 147721.26 34 0.96 71401.731 81138.789 152540.52 35 0.99 73710.912 82665.399 156376.31	23	0.63	45106.729	56725.471	101832.2
26 0.72 51931.826 64626.378 116558.2 27 0.75 54316.798 66399.085 120715.88 28 0.78 56531.071 69203.688 125734.76 29 0.81 58549.965 70777.191 129327.16 30 0.84 61294.082 72188.885 133482.97 31 0.87 64151.522 75361.508 139513.03 32 0.9 66568.19 76730.799 143298.99 33 0.93 69008.021 78713.241 147721.26 34 0.96 71401.731 81138.789 152540.52 35 0.99 73710.912 82665.399 156376.31	24	0.66	46994.137	58596.968	105591.1
27 0.75 54316.798 66399.085 120715.88 28 0.78 56531.071 69203.688 125734.76 29 0.81 58549.965 70777.191 129327.16 30 0.84 61294.082 72188.885 133482.97 31 0.87 64151.522 75361.508 139513.03 32 0.9 66568.19 76730.799 143298.99 33 0.93 69008.021 78713.241 147721.26 34 0.96 71401.731 81138.789 152540.52 35 0.99 73710.912 82665.399 156376.31	25	0.69	49352.392	61639.01	110991.4
28 0.78 56531.071 69203.688 125734.76 29 0.81 58549.965 70777.191 129327.16 30 0.84 61294.082 72188.885 133482.97 31 0.87 64151.522 75361.508 139513.03 32 0.9 66568.19 76730.799 143298.99 33 0.93 69008.021 78713.241 147721.26 34 0.96 71401.731 81138.789 152540.52 35 0.99 73710.912 82665.399 156376.31	26	0.72	51931.826	64626.378	116558.2
29 0.81 58549.965 70777.191 129327.16 30 0.84 61294.082 72188.885 133482.97 31 0.87 64151.522 75361.508 139513.03 32 0.9 66568.19 76730.799 143298.99 33 0.93 69008.021 78713.241 147721.26 34 0.96 71401.731 81138.789 152540.52 35 0.99 73710.912 82665.399 156376.31	27	0.75	54316.798	66399.085	120715.88
30 0.84 61294.082 72188.885 133482.97 31 0.87 64151.522 75361.508 139513.03 32 0.9 66568.19 76730.799 143298.99 33 0.93 69008.021 78713.241 147721.26 34 0.96 71401.731 81138.789 152540.52 35 0.99 73710.912 82665.399 156376.31	28	0.78	56531.071	69203.688	125734.76
31 0.87 64151.522 75361.508 139513.03 32 0.9 66568.19 76730.799 143298.99 33 0.93 69008.021 78713.241 147721.26 34 0.96 71401.731 81138.789 152540.52 35 0.99 73710.912 82665.399 156376.31	29	0.81	58549.965	70777.191	129327.16
32 0.9 66568.19 76730.799 143298.99 33 0.93 69008.021 78713.241 147721.26 34 0.96 71401.731 81138.789 152540.52 35 0.99 73710.912 82665.399 156376.31	30	0.84	61294.082	72188.885	133482.97
33 0.93 69008.021 78713.241 147721.26 34 0.96 71401.731 81138.789 152540.52 35 0.99 73710.912 82665.399 156376.31	31	0.87	64151.522	75361.508	139513.03
34 0.96 71401.731 81138.789 152540.52 35 0.99 73710.912 82665.399 156376.31	32	0.9	66568.19	76730.799	143298.99
35 0.99 73710.912 82665.399 156376.31	33	0.93	69008.021	78713.241	147721.26
	34	0.96	71401.731	81138.789	152540.52
36 1.02 76116.427 84816.022 160932.45	35	0.99	73710.912	82665.399	156376.31
	36	1.02	76116.427	84816.022	160932.45

Recipes

1. Growth media (pH 5.1)

1x MS salts

1% (w/v) sucrose

0.05% (w/v) MES

0.1% (w/v) agar

<u>Acknowledgments</u>

We thank Professor T. Mimura (Kobe University), Professor Y. Yoshimoto (Kansai Medical University) and Professor T. Shimmen (University of Hyogo) for valuable information about centrifuge microscopes and Y. Ishibashi for technical assistance. This work was supported in part by TOYOBO Biotechnology Foundation (to M. Toyota); Grant-in-Aid for JSPS Fellows (to M. Toyota), for JSPS Fellows for Research Abroad (to M. Toyota) and for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology (16085205 to M.T.M.); and grants from the Bioarchitect Project of RIKEN (to M.T.M.) and PREST (to M. Toyota and M.T.M.).

References

- Nakamura, M., Toyota, M., Tasaka, M. and Morita, M. T. (2011). <u>An Arabidopsis E3 ligase, SHOOT GRAVITROPISM9, modulates the interaction between statoliths and F-actin in gravity sensing.</u> *Plant Cell* 23(5): 1830-1848.
- Saito, C., Morita, M. T., Kato, T. and Tasaka, M. (2005). <u>Amyloplasts and vacuolar membrane dynamics in the living graviperceptive cell of the *Arabidopsis* inflorescence <u>stem.</u> *Plant Cell* 17(2): 548-558.
 </u>
- Toyota, M., Ikeda, N., Sawai-Toyota, S., Kato, T., Gilroy, S., Tasaka, M. and Morita, M. T. (2013). <u>Amyloplast displacement is necessary for gravisensing in *Arabidopsis* shoots as revealed by a centrifuge microscope. *Plant J* 76(4): 648-660.
 </u>