

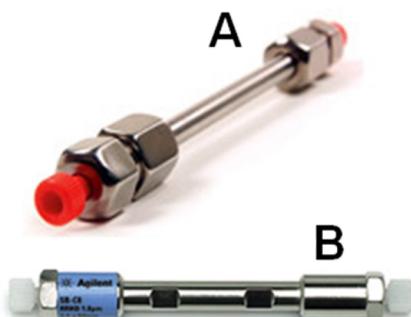
Synthesis of the adenosine A_{2A} receptor fluorescent agonist MRS5424

Kenneth A. Jacobson¹ and Francisco Ciruela^{2*}

¹National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, USA; ²Departament de Patologia i Terapèutica Experimental, Universitat de Barcelona-IDIBELL, L'Hospitalet de Llobregat, Spain

*For correspondence: fciruela@ub.edu

[Abstract] MRS5424 is a functional fluorescent agonist for the adenosine A_{2A} receptor (A_{2AR}) in which the fluorescent dye Alexa Fluor 532 is covalently attached to the A_{2AR} agonist 2-[[2-[4-[2-(2-aminoethyl)-aminocarbonyl]ethyl]phenyl]ethylamino]-5'-N-ethylcarboxamidoadenosine (APEC). This easy-to-synthesize new A_{2AR} fluorescent ligand was shown to be extremely useful for determining the binding kinetic constants of A_{2AR} in a real-time mode (Fernandez-Duenas *et al.*, 2012). In addition, this fluorescent A_{2AR} ligand is compatible with ligand-receptor interaction studies using fluorescent plate readers. Finally, it is important to mention that even though the sensitivity of this A_{2AR} fluorescent ligand may not be as high as that observed for the marketed A_{2AR} radioactive compounds, the use of such fluorescent derivative may have some advantages over radioactive probes, for example its safe delivery, manipulation and disposal, the short signal acquisition times, the feasibility to automate and to miniaturize, and finally its cost.


Materials and Reagents

1. Alexa Fluor 532 carboxylic acid, *N*-succinimidyl ester (Life Technologies, InvitrogenTM)
2. Anhydrous dimethylformamide (DMF; HPLC grade) (Alfa Aesar)
3. Sodium tetraborate labeling buffer (0.1 M, pH 8.5)
4. 2-[[2-[4-[2-(2-aminoethyl)-aminocarbonyl]ethyl]phenyl]ethylamino]-5'-N-ethyl-carboxamidoadenosine (APEC) (NIMH Chemical Synthesis and Drug Supply Program, <http://nimh-repository.rti.org/>)
5. Triethylammonium acetate (TEAA)-CH₃CN (BioUltra grade) (Sigma-Aldrich)
6. Tetrabutylammonium dihydrogenphosphate-CH₃CN (TBAP) [puriss. ≥99.0% (T)] (Sigma-Aldrich)

Equipment

1. RP-C18(2) semipreparative column (250 x 10.0 mm) (Phenomenex)

2. Hewlett-Packard 1100 HPLC equipped with a Luna 5 μ m RP-C18(2) semipreparative column (250 x 10.0 mm) (Figure 1B) (Phenomenex) or a Zorbax SB-Aq 5 μ m analytical column (50 x 4.6 mm) (Agilent) (Figure 1A)

Figure 1. Picture of the Luna 5 μ m RP-C18(2) semipreparative column (250 x 10.0 mm) (B) and the Zorbax SB-Aq 5 μ m analytical column (50 x 4.6 mm) (A)

3. Diode array detector
4. POLARstar Optima plate-reader (BMG LABTECH)

Procedure

Briefly, MRS5424 (Fernandez-Duenas *et al.*, 2012) was synthesized as follows.

1. Firstly, Alexa Fluor 532 carboxylic acid, *N*-succinimidyl ester (1.0 mg, 1.38 μ mol) was dissolved in anhydrous DMF (200 μ l).
2. Next, make a 0.1 M sodium tetraborate buffer by dissolving 0.038 g of sodium tetraborate decahydrate for every ml of water. Adjust pH with HCl to 8.5. The labeling buffer should be made just before using it (*i.e.* fresh) since air exposure of this solution will result in carbon dioxide absorption, which will change its pH.
3. Then, 200 l of freshly prepared sodium tetraborate labeling buffer (0.1 M, 1 ml, pH 8.5) containing APEC (1.12 mg, 2.07 μ mol) - initially dissolved in anhydrous DMF - was added to the Alexa Fluor 532 solution.
4. The reaction mixture was protected from light and after stirring for 18 h at 4 °C, the mixture was diluted with H₂O (600 μ l) and purification was performed by HPLC with a Luna 5 μ m RP-C18(2) semipreparative column under the following conditions: flow rate of 2 ml/min; 10 mM triethylammonium acetate (TEAA)-CH₃CN from 100:0 (v/v) to 70:30 (v/v) in 30 min.
5. An homogeneous product corresponding to the MRS5424 was isolated in the triethylammonium salt form with an HPLC retention time of 13.5 min.

6. Analytical purity of this conjugate was checked using a Hewlett-Packard 1100 HPLC equipped with a Zorbax SB-Aq 5 μ m analytical column. Mobile phase: linear gradient solvent system: 5 mM TBAP from 80:20 to 40:60 in 13 min; the flow rate was 0.5 ml/min (retention time 9.08 min).
7. Peaks were detected by UV absorption with a diode array detector at 254, 275, and 280 nm, and the yield of MRS5424 was 0.67 mg (31%). ESI-HRMS m/z 1150.4142 [M + H]⁺, C₅₅H₆₃N₁₁O₁₃S₂·H⁺: Calcd. 1150.4127.
8. Finally, in order to check the fluorescence features of the MRS5424 the excitation/emission spectrum was assessed by means of a POLARstar Optima plate-reader.

Acknowledgments

This work was supported by grants SAF2011-24779, Consolider-Ingenio CSD2008-00005 and PCIN-2013-019-C03-03 from Ministerio de Economía y Competitividad and ICREA Academia-2010 from the Catalan Institution for Research and Advanced Studies (to FC), by the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) Intramural Research Program (to KAJ). FC belong to the “Neuropharmacology and Pain” accredited research group (Generalitat de Catalunya, 2014 SGR 1251). We thank E. Castaño and B. Torrejón from the Scientific and Technical Services (SCT) group at the Bellvitge Campus of the University of Barcelona for their technical assistance.

References

1. Fernandez-Duenas, V., Gomez-Soler, M., Jacobson, K. A., Kumar, S. T., Fuxe, K., Borroto-Escuela, D. O. and Ciruela, F. (2012). [Molecular determinants of A_{2A}R-D₂R allosterism: role of the intracellular loop 3 of the D₂R](#). *J Neurochem* 123(3): 373-384.