Cell Biology


Protocols in Current Issue
Protocols in Past Issues
0 Q&A 2286 Views Aug 20, 2020
The yeast Saccharomyces cerevisiae has been perceived over decades as a highly valuable model organism for the investigation of ion homeostasis. Indeed, many of the genes and biological systems that function in yeast ion homeostasis are conserved throughout unicellular eukaryotes to humans. In this context, measurement of the yeast cellular ionic content provides information regarding yeast response to gene deletion or exposure to chemicals for instance. We propose here a protocol that we tested for the analysis of 12 elements (Ba2+, Ca2+, Cd2+, Co2+, Cu2+, Fe2+, K+, Mg2+, Mn2+, Na+, Ni2+, Zn2+) in yeast using Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES). This technique enables determination of the cellular content of numerous ions from one biological sample.
0 Q&A 3158 Views Apr 20, 2020
Plants recognize a wide variety of microbial molecules to detect and respond to potential invaders. Recognition of Microbe-Associated Molecular Patterns (MAMPs) by cell surface receptors initiate a cascade of biochemical responses that include, among others, ion fluxes across the plasma membrane. A consequence of such event is a decrease in the concentration of extracellular H+ ions, which can be experimentally detected in plant cell suspensions as a shift in the pH of the medium. Thus, similarly to reactive oxygen species (ROS) accumulation, phosphorylation of MAP kinases and induction of defense-related genes, MAMP-induced medium alkalinization can be used as a proxy for the activation of plant immune responses. Here, we describe a detailed protocol for the measurement of medium alkalinization of tobacco BY-2 cell suspensions upon treatment with two different MAMPs: chitohexamers derived from fungal cell walls (NAG6; N-acetylglucosamine) and the flagellin epitope flg22, found in the bacterial flagellum. This method provides a reliable and fast platform to access MAMP-Triggered Immunity (MTI) in tobacco cell suspensions and can be easily adapted to other plant species as well as to other MAMPs.
0 Q&A 4278 Views Mar 20, 2020
Tissue-resident macrophages are pivotal for a tightly-regulated iron metabolism at a cellular and systemic level, since subtle iron alterations increase the susceptibility for microbial infections or drive multiple diseases. However, research on cellular iron homeostasis in macrophages remains challenging due to the limited amount of available methods using radioactive 59Fe isotopes or strong iron chelators, which might be inapplicable in certain experimental settings. This protocol describes the analysis of the quenchable iron pool (QIP) in macrophages by loading these cells with exogenous iron-complexes. Thereby, the cytoplasmic iron pool can be determined, since the iron uptake ability of macrophages inversely correlates with intracellular iron levels. Thus, this assay enables the accurate analysis of even minor alterations in cytoplasmic iron fluxes and is applicable in almost every laboratory environment. In addition, the protocol can also be adopted for other immune cell types in vitro and in vivo.
0 Q&A 8973 Views Apr 5, 2017
Fertilization calcium waves are a conserved trigger for animal development; however, genetic analysis of these waves has been limited due to the difficulty of imaging in vivo fertilization. Here we describe a protocol to image calcium dynamics during in vivo fertilization in the genetic animal model Caenorhabditis elegans. This protocol consists of germline microinjection of a chemical calcium indicator, worm immobilization, live imaging, and image processing that quantifies the calcium fluorescence in the oocyte region moving in the field-of-view during ovulation. This imaging protocol can also be used to image other cellular processes during in vivo fertilization in C. elegans, such as membrane fusion and cytoskeletal dynamics.
0 Q&A 10673 Views Jan 20, 2017
Two-Electrode Voltage-Clamp (TEVC) recording in Xenopus laevis oocytes provides a powerful method to investigate the functions and regulation of ion channel proteins. This approach provides a well-known tool to characterize ion channels or transporters expressed in Xenopus laevis oocytes. The plasma membrane of the oocyte is impaled by two microelectrodes, one for voltage sensing and the other one for current injection. Here we list a protocol that allows robust reconstitution of multi-component signaling pathways. This protocol has been used to study plant ion channels, including the SLAC1 channel (SLOW ANION CHANNEL-ASSOCIATED 1), in particular SLAC1 activation by either the protein kinase OST1 (OPEN STOMATA 1), Ca2+-dependent protein kinases (CPKs) or the GHR1 (GUARD CELL HYDROGEN PEROXIDE-RESISTANT 1) transmembrane receptor-like protein. Data are presented showing reconstitution of abscisic acid activation of the SLAC1 anion channel by the ‘monomeric’ ABA (abscisic acid) receptor RCAR1/PYL9 (PYRABACT INRESISTANCE1 [PYR1]/PYR1-LIKE [PYL]/REGULATORYCOMPONENTS OF ABA RECEPTORS [RCAR]) by co-expressing four components of the abscisic acid signaling core. This protocol is also suitable for studying other ion channel functions and regulation mechanisms, as well as transporter proteins.
1 Q&A 8887 Views Dec 5, 2015
Rice plants release proton (H+) from root cells into rhizosphere area leading to the acidification of the rhizosphere and increased solubility of ferric iron complexes on the cell membrane, which is important for iron uptakes. Here, we present a detailed protocol to measure H+ flux in root hairs of transgenic rice seedlings and transgenic rice protoplasts by the Non-invasive Micro-test Technique (NMT). The NMT system is based on a non-invasive microelectrode technology that is automatically controlled by a computer, to achieve a three-dimensional, real-time, dynamic characterization of the concentration, velocity, and direction of a variety of molecules or ions. Because there is no need to directly contact the measured cells that could cause cell damage, we are able to obtain accurate and real time information on ion concentration. This is the first protocol that describes the non-invasive micro measurement technique of both root hairs and protoplasts in rice. In NMT, voltage differences are measured at two excursion points that are manipulated using a computer. Voltage differences can be converted into H+ fluxes using the ASET 2.0 (The imFlux® software) and JCal v3.2.1 Software. Analysis of the H+ fluxes provides a simultaneous measure of the crossing of a localized region of the root surface in response to stress, which provides real-time in-situ detection of net ion transport across membranes. This method will promote use of NMT in plant biology.
0 Q&A 7555 Views Nov 20, 2015
Heterologous expression of genes in budding yeast Saccharomyces cerevisiae (S. cerevisiae) is especially suitable to functionally study the corresponding encoded protein at the cellular level (Bonneaud et al., 1991). This is mainly because many strains defective in specific activities are available and could be complemented by homologous genes existing across the eukaryotic kingdom (http://www.yeastgenome.org/). However, the protocol we describe here is not a complementation but a “gain-of-function” assay. It is based on a drop-test assay that we have set up to assess the cellular zinc tolerance conferred by the expression of heterologous genes in the wild-type S. cerevisiae. Different dilutions of a yeast culture expressing the heterologous gene of interest are grown on a range of zinc-enriched plates, and are then compared to the control yeast expressing the empty vector. Working with different concentrations of both yeast and zinc are essential to succeed in describing zinc tolerance phenotype upon yeast transformation (Mirouze et al., 2006). This test has also proven to be valuable to differentiate among related members of gene families as exemplified for Arabidopsis Plant Defensin type1 (Shahzad et al., 2013).
0 Q&A 11889 Views Jan 20, 2015
Here we describe a protocol which we have used to study the homeostasis intracellular in vivo in lactic acid bacteria (LAB) using a fluorescent probe. This type of probes can be used for determining changes in the pH of cytoplasm with high sensitivity, temporal resolution and technical simplicity as well as accessing the rate of change of intracellular pH in response to a stimulus from kinetic measurements on short time scales (Breeuwer et al., 1996; Molenaar et al., 1991). This protocol has been designed to measure the intracellular pH using the pH-sensitive fluorescent probe 2´,7´-bis-(2-carboxyethyl)-5(and-6)-carboxyfluorescein (BCECF) in LAB, Enterococcus faecalis (E. faecalis), Lactococcus lactis (L. lactis) and Lactobacillus casei (L. casei).
1 Q&A 21422 Views Jan 20, 2014
Intracellular pH (pHi) is an important physiological determinant of enzyme activity and cellular function (Kurkdjian and Guern, 1989). All proteins depend on a tightly regulated pH to maintain their structure and function. Protonation–deprotonation events can dictate the charge of biological surfaces and are integral steps in many metabolic reactions (Casey et al., 2010). Moreover, the proton gradient across the mitochondrial membrane is used to generate cellular energy and support other mitochondrial processes. As a result, cells have developed multiple mechanisms to maintain a narrow range of pHi in response to extra- and intracellular fluctuations in pH (Orij et al., 2012). Here, we describe a protocol for pHi measurement in live cells that uses fluorescent microscopy and the pH sensitive dye 2’,7’-Bis-(2-Carboxyethyl)-5-(and-6-)-Carboxyfluorescein Acetoxymethyl Ester (BCECF-AM). This method was recently used to determine the effects of intracellular pH changes on global histone acetylation levels (McBrian et al., 2013).
0 Q&A 8076 Views Nov 20, 2013
Transport assays allow the direct kinetic analysis of a specific transporter by measuring apparent Km and Vmax values, and permit the characterization of substrate specificity profiles through competition assays. In this protocol, we describe a rapid and easy method for performing uptake assays in the model filamentous ascomycete Aspergillus nidulans. These assays make use of A. nidulans germinating conidiospores, thus avoiding technical difficulties associated with the use of mycelia. The ease of construction genetic null mutants in this model fungus permits the rigorous characterization of any transporter in the absence of similar transporters with overlapping specificities, a common problem in relevant studies.



We use cookies on this site to enhance your user experience. By using our website, you are agreeing to allow the storage of cookies on your computer.