Developmental Biology

Protocols in Current Issue
Protocols in Past Issues
0 Q&A 609 Views Nov 20, 2022

During an animal's development, a large number of cells undergo apoptosis, a suicidal form of death. These cells are promptly phagocytosed by other cells and degraded inside phagosomes. The recognition, engulfment, and degradation of apoptotic cells is an evolutionarily conserved process occurring in all metazoans. Recently, we discovered a novel event in the nematode Caenorhabditis elegans: the double-membrane autophagosomes are recruited to the surface of phagosomes; subsequently, the outer membrane of an autophagosome fuses with the phagosomal membrane, allowing the inner vesicle to enter the phagosomal lumen and accumulate there over time. This event facilitates the degradation of the apoptotic cell inside the phagosome. During this study, we developed a real-time imaging protocol monitoring the recruitment and fusion of autophagosomes to phagosomes over two hours during embryonic development. This protocol uses a deconvolution-based microscopic imaging system with an optimized setting to minimize photodamage of the embryo during the recording period for high-resolution images. Furthermore, acid-resistant fluorescent reporters are chosen to label autophagosomes, allowing the inner vesicles of an autophagosome to remain visible after entering the acidic phagosomal lumen. The methods described here, which enable high sensitivity, quantitative measurement of each step of the dynamic incorporation in developing embryos, are novel since the incorporation of autophagosomes to phagosomes has not been reported previously. In addition to studying the degradation of apoptotic cells, this protocol can be applied to study the degradation of non-apoptotic cell cargos inside phagosomes, as well as the fusion between other types of intracellular organelles in living C. elegans embryos. Furthermore, its principle of detecting the membrane fusion event can be adapted to study the relationship between autophagosomes and phagosomes or other intracellular organelles in any biological system in which real-time imaging can be conducted.

0 Q&A 960 Views Sep 20, 2022

The activity of numerous autophagy-related proteins depends on their phosphorylation status, which places importance on understanding the responsible kinases and phosphatases. Great progress has been made in identifying kinases regulating autophagy, but much less is known about the phosphatases counteracting their function. Genetic screens and modern proteomic approaches provide powerful tools to identify candidate phosphatases, but further experiments are required to assign direct roles for candidates. We have devised a novel protocol to test the role of purified phosphatases in dephosphorylating specific targets in situ. This approach has the potential to visualize context-specific differences in target dephosphorylation that are not easily detected by lysate-based approaches such as Western blots.

Graphical abstract:

0 Q&A 1076 Views Aug 20, 2022

The wing imaginal discs in Drosophila larvae are a pair of sac-like structures that later form the wings of the adult fly. During the past decades, wing discs have been used as a simple and accessible model system, for identifying genes and deciphering signaling cascades that play crucial roles in many aspects of development. In this protocol, we describe a simple method for preparing a cell suspension from wing discs (see Graphical abstract). This method can also be applied to the preparation of single-cell suspensions from other types of Drosophila tissues. When combined with genetic labeling, the dissociated cells are suitable for downstream analysis, such as flow cytometry. This method was recently used to isolate different populations of cells from Drosophila imaginal discs (Yang et al., 2022).

Graphical abstract:

Procedures to prepare a single-cell suspension from Drosophila imaginal discs.

Illustration of the main steps to dissect, temporarily store, and dissociate imaginal discs from Drosophila larvae. Refer to the Procedure section for detailed description of each step.

0 Q&A 1688 Views Jul 5, 2022

Understanding protein-protein interactions (PPIs) and interactome networks is essential to reveal molecular mechanisms mediating various cellular processes. The most common method to study PPIs in vivo is affinity purification combined with mass spectrometry (AP–MS). Although AP–MS is a powerful method, loss of weak and transient interactions is still a major limitation. Proximity labeling (PL) techniques have been developed as alternatives to overcome these limitations. Proximity-dependent biotin identification (BioID) is one such widely used PL method. The first-generation BioID enzyme BirA*, a promiscuous bacterial biotin ligase, has been effectively used in cultured mammalian cells; however, relatively slow enzyme kinetics make it less effective for temporal analysis of protein interactions. In addition, BirA* exhibits reduced activity at temperatures below 37°C, further restricting its use in intact organisms cultured at lower optimal growth temperatures (e.g., Drosophila melanogaster). TurboID, miniTurbo, and BirA*-G3 are next generation BirA* variants with improved catalytic activity, allowing investigators to use this powerful tool in model systems such as flies. Here, we describe a detailed experimental workflow to efficiently identify the proximal proteome (proximitome) of a protein of interest (POI) in the Drosophila brain using CRISPR/Cas9-induced homology-directed repair (HDR) strategies to endogenously tag the POI with next generation BioID enzymes.

0 Q&A 1345 Views Jun 5, 2022

Aging and wasting of skeletal muscle reduce organismal fitness. Regrettably, only limited interventions are currently available to address this unmet medical need. Many methods have been developed to study this condition, including the intramuscular electroporation of DNA plasmids. However, this technique requires surgery and high electrical fields, which cause tissue damage. Here, we report an optimized protocol for the electroporation of small interfering RNAs (siRNAs) into the tibialis anterior muscle of mice. This protocol does not require surgery and, because of the small siRNA size, mild electroporation conditions are utilized. By inducing target mRNA knockdown, this method can be used to interrogate gene function in muscles of mice from different strains, genotypes, and ages. Moreover, a complementary method for siRNA transfection into differentiated myotubes can be used for testing siRNA efficacy before in vivo use. Altogether, this streamlined protocol is instrumental for basic science and translational studies in muscles of mice and other animal models.

0 Q&A 1102 Views May 20, 2022

Single cell RNA sequencing is a powerful tool that can be used to identify distinct cell types and transcriptomic differences within complex tissues. It has proven to be especially useful in tissues of the eye, where investigators have identified novel cell types within the retina, anterior chamber, and iridocorneal angle and explored transcriptomic contribution to disease phenotypes in age-related macular degeneration. However, to obtain high quality results, the technique requires isolation of healthy single cells from the tissue of interest, seeking complete tissue digestion while minimizing stress and transcriptomic changes in the isolated cells prior to library preparation. Here, we present a protocol developed in our laboratory for isolation of live single cells from the murine iridocorneal angle, which includes Schlemm’s canal and the trabecular meshwork, suitable for single cell RNA sequencing, flow cytometry, or other downstream analysis.

Graphical abstract:

0 Q&A 1054 Views Mar 20, 2022

Analysis of DNA double strand breaks (DSBs) is important for understanding dyshomeostasis within the nucleus, impaired DNA repair mechanisms, and cell death. In the C. elegans germline, DSBs are important indicators of all three above-mentioned conditions. Although multiple methods exist to assess apoptosis in the germline of C. elegans, direct assessment of DSBs without the need for a reporter allele or protein-specific antibody is useful. As such, unbiased immunofluorescent approaches can be favorable. This protocol details a method for using terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) to assess DNA DSBs in dissected C. elegans germlines. Germlines are co-labeled with DAPI to allow for easy assessment of DNA DSBs. This approach allows for qualitative or quantitative measures of DNA DSBs.

Graphic abstract:

Schematic for TUNEL labeling of C. elegans germlines.

0 Q&A 1837 Views Jan 20, 2022

The Drosophila larval haematopoietic organ or lymph gland consists of multiple cell types arranged in zones. The smallest stem cell compartment consists of 40-45 cells that constitute the haematopoietic niche. In order to analyse the haematopoietic niche, it needs to be labelled with a specific antibody to differentiate it from the other cell types. To characterise a phenotype, it is often necessary to investigate the expression of a gene in a particular stem cell compartment within the lymph gland. In such a situation, in-situ hybridization is performed, as it indicates the localization of gene expression. Although chromogenic in-situ hybridization enables us to compare the signal and tissue morphology simultaneously, it fails to harness the information related to the degree of gene expression. Dual immunofluorescence and in-situ hybridization (IF-FISH) serves as the powerful technique that helps to visualize both protein and mRNA expression within the same cell type. This technique also provides reliable quantification regarding mRNA expression levels. When dealing with a few cells within the organ, like the niche of the larval lymph gland, fluorescently labelled riboprobes allows us to localize and assess the magnitude of gene expression within the niche cells, which are also immunolabelled with a niche-specific marker, to distinguish them from the adjoining cell types.

0 Q&A 1663 Views Dec 20, 2021

Reactive oxygen species and reactive nitrogen species (RONS) are involved in programmed cell death in the context of numerous degenerative and chronic diseases. In particular, the ability of cells to maintain redox homeostasis is necessary for an adaptive cellular response to adverse conditions that can cause damage to proteins and DNA, resulting in apoptosis and genetic mutations. Here, we focus on the 2',7'-dichlorodihydrofluorescein diacetate (DCFH2-DA) assay to detect RONS. Although this fluorescence-based assay is widely utilized due to its high sensitivity to detect changes in cellular redox status that allow measuring alterations in RONS over time, its validity has been a matter of controversy. If correctly carried out, its limitations are understood and results are correctly interpreted, the DCFH2-DA assay is a valuable tool for cell-based studies.

0 Q&A 1583 Views Dec 5, 2021

Regulation of microtubule stability is crucial for diverse biological processes, including cell division, morphogenesis, and signaling. Various in vitro assays for microtubule stability have been developed to identify and characterize proteins involved in controlling microtubule stability. Here, we introduce a simple ex-vivo assay for identifying potential microtubule regulators in the wing imaginal disc of Drosophila melanogaster. This assay utilizes silicon rhodamine-tubulin (SiR-Tub) as a cell-permeable fluorogenic dye for labeling microtubules. In an attempt to increase the sensitivity of the screen, we designed an assay using a sensitized microtubule condition. Wing discs are treated with SiR-Tub followed by demecolcine, a microtubule inhibitor, to partially label impaired microtubules. Under this sensitized condition, we can test whether overexpression or downregulation of a gene can enhance or suppress the weakened SiR-Tub labeling. This assay allows highly sensitive detection of microtubules in developing larval tissues. Hence, it provides a useful tool for identifying new microtubule regulators in both unfixed and fixed imaginal discs in Drosophila. This strategy may also be applied to characterize microtubule regulators in tissues from other model organisms.

Graphic abstract:

Graphical summary of Ex-vivo microtubule stability assay using Drosophila wing disc.

We use cookies on this site to enhance your user experience. By using our website, you are agreeing to allow the storage of cookies on your computer.