Systems Biology


Categories

Protocols in Past Issues
0 Q&A 1139 Views Mar 20, 2025

This manuscript details two modified protocols for the isolation of long-stranded or high molecular weight (HMW) DNA from Magnaporthaceae (Ascomycota) fungal mycelium intended for whole genome sequencing. The Cytiva Nucleon PhytoPure and the Macherey-Nagel NucleoBond HMW DNA kits were selected because the former requires lower amounts of starting material and the latter utilizes gentler methods to maximize DNA length, albeit at a higher requirement for input material. The Cytiva Nucleon PhytoPure kit successfully recovered HMW DNA for half of our fungal species by increasing the amount of RNase A treatment and adding in a proteinase K treatment. To reduce the impact of pigmentation development, which occurs toward later stages of culturing, extractions were run in quadruplicate to increase overall DNA concentration. We also adapted the Macherey-Nagel NucleoBond HMW DNA kit for high-quality HMW DNA by grinding the sample to a fine powder, overnight lysis, and splitting the sample before washing the precipitated DNA. For both kits, precipitated DNA was spooled out pre-washing, ensuring a higher percentage of high-integrity long strands. The Macherey-Nagel protocol offers advantages over the first through the utilization of gravity columns that provide gentler treatment, yielding >50% of high-purity DNA strands exceeding 40 kbp. The limitation of this method is the requirement for a large quantity of starting material (1 g). By triaging samples based on the rate of growth relative to the accumulation of secondary metabolites, our methodologies hold promise for yielding reliable and high-quality HMW DNA from a variety of fungal samples, improving sequencing outcomes.

0 Q&A 334 Views Mar 20, 2025

Zebrafish genetic mutants have emerged as a valuable model system for studying various aspects of disease and developmental biology. Mutant zebrafish embryos are generally identified based on phenotypic defects at later developmental stages, making it difficult to investigate underlying molecular mechanisms at earlier stages. This protocol presents a PCR-based genotyping method that enables the identification of wild-type, heterozygous, and homozygous zebrafish genetic mutants at any developmental stage, even when they are phenotypically indistinguishable. The approach involves the amplification of specific genomic regions using carefully designed primers, followed by gel electrophoresis. This genotyping method facilitates the investigation of the molecular mechanisms driving phenotypic defects that are observed at later timepoints. This protocol allows researchers to perform analyses such as immunofluorescence, RT-PCR, RNA sequencing, and other molecular experiments on early developmental stages of mutants. The availability of this protocol expands the utility of zebrafish genetic mutants for elucidating the molecular underpinnings of various biological processes throughout development.

0 Q&A 270 Views Mar 5, 2025

Mitochondrial genomes (mitogenomes) display relatively rapid mutation rates, low sequence recombination, high copy numbers, and maternal inheritance patterns, rendering them valuable blueprints for mapping lineages, uncovering historical migration patterns, understanding intraspecific population dynamics, and investigating how environmental pressures shape traits underpinned by genetic variation. Here, we present the bioinformatic pipeline and code used to assemble and annotate the complete mitogenomes of five houndsharks (Chondrichthyes: Triakidae) and compare them to the mitogenomes of other closely related species. We demonstrate the value of a combined assembly approach for detecting deviations in mitogenome structure and describe how to select an assembly approach that best suits the sequencing data. The datasets required to run our analyses are available on the GitHub and Dryad repositories.

0 Q&A 232 Views Mar 5, 2025

The limited standards for the rigorous and objective use of mitochondrial genomes (mitogenomes) can lead to uncertainties regarding the phylogenetic relationships of taxa under varying evolutionary constraints. The mitogenome exhibits heterogeneity in base composition, and evolutionary rates may vary across different regions, which can cause empirical data to violate assumptions of the applied evolutionary models. Consequently, the unique evolutionary signatures of the dataset must be carefully evaluated before selecting an appropriate approach for phylogenomic inference. Here, we present the bioinformatic pipeline and code used to expand the mitogenome phylogeny of the order Carcharhiniformes (groundsharks), with a focus on houndsharks (Chondrichthyes: Triakidae). We present a rigorous approach for addressing difficult-to-resolve phylogenies, incorporating multi-species coalescent modelling (MSCM) to address gene/species tree discordance. The protocol describes carefully designed approaches for preparing alignments, partitioning datasets, assigning models of evolution, inferring phylogenies based on traditional site-homogenous concatenation approaches as well as under multispecies coalescent and site heterogenous models, and generating statistical data for comparison of different topological outcomes. The datasets required to run our analyses are available on GitHub and Dryad repositories.

0 Q&A 1179 Views Jul 5, 2024

In recent years, the increase in genome sequencing across diverse plant species has provided a significant advantage for phylogenomics studies, allowing the analysis of one of the most diverse gene families in plants: nucleotide-binding leucine-rich repeat receptors (NLRs). However, due to the sequence diversity of the NLR gene family, identifying key molecular features and functionally conserved sequence patterns is challenging through multiple sequence alignment. Here, we present a step-by-step protocol for a computational pipeline designed to identify evolutionarily conserved motifs in plant NLR proteins. In this protocol, we use a large-scale NLR dataset, including 1,862 NLR genes annotated from monocot and dicot species, to predict conserved sequence motifs, such as the MADA and EDVID motifs, within the coiled-coil (CC)-NLR subfamily. Our pipeline can be applied to identify molecular signatures that have remained conserved in the gene family over evolutionary time across plant species.

0 Q&A 1233 Views Mar 20, 2024

Estimating the time of most recent common ancestor (tMRCA) is important to trace the origin of pathogenic viruses. This analysis is based on the genetic diversity accumulated in a certain time period. There have been thousands of mutant sites occurring in the genomes of SARS-CoV-2 since the COVID-19 pandemic started; six highly linked mutation sites occurred early before the start of the pandemic and can be used to classify the genomes into three main haplotypes. Tracing the origin of those three haplotypes may help to understand the origin of SARS-CoV-2. In this article, we present a complete protocol for the classification of SARS-CoV-2 genomes and calculating tMRCA using Bayesian phylodynamic method. This protocol may also be used in the analysis of other viral genomes.


Key features

• Filtering and alignment of a massive number of viral genomes using custom scripts and ViralMSA.

• Classification of genomes based on highly linked sites using custom scripts.

• Phylodynamic analysis of viral genomes using Bayesian evolutionary analysis sampling trees (BEAST).

• Visualization of posterior distribution of tMRCA using Tracer.v1.7.2.

• Optimized for the SARS-CoV-2.


Graphical overview



Graphical workflow of time of most recent common ancestor (tMRCA) estimation process

0 Q&A 901 Views Dec 5, 2023

The recent surge in plant genomic and transcriptomic data has laid a foundation for reconstructing evolutionary scenarios and inferring potential functions of key genes related to plants’ development and stress responses. The classical scheme for identifying homologous genes is sequence similarity–based searching, under the crucial assumption that homologous sequences are more similar to each other than they are to any other non-homologous sequences. Advances in plant phylogenomics and computational algorithms have enabled us to systemically identify homologs/orthologs and reconstruct their evolutionary histories among distantly related lineages. Here, we present a comprehensive pipeline for homologous sequences identification, phylogenetic relationship inference, and potential functional profiling of genes in plants.


Key features

• Identification of orthologs using large-scale genomic and transcriptomic data.

• This protocol is generalized for analyzing the evolution of plant genes.

0 Q&A 493 Views Nov 20, 2023

The relative ease of genetic manipulation in S. cerevisiae is one of its greatest strengths as a model eukaryotic organism. Researchers have leveraged this quality of the budding yeast to study the effects of a variety of genetic perturbations, such as deletion or overexpression, in a high-throughput manner. This has been accomplished by producing a number of strain libraries that can contain hundreds or even thousands of distinct yeast strains with unique genetic alterations. While these strategies have led to enormous increases in our understanding of the functions and roles that genes play within cells, the techniques used to screen genetically modified libraries of yeast strains typically rely on plate or sequencing-based assays that make it difficult to analyze gene expression changes over time. Microfluidic devices, combined with fluorescence microscopy, can allow gene expression dynamics of different strains to be captured in a continuous culture environment; however, these approaches often have significantly lower throughput compared to traditional techniques. To address these limitations, we have developed a microfluidic platform that uses an array pinning robot to allow for up to 48 different yeast strains to be transferred onto a single device. Here, we detail a validated methodology for constructing and setting up this microfluidic device, starting with the photolithography steps for constructing the wafer, then the soft lithography steps for making polydimethylsiloxane (PDMS) microfluidic devices, and finally the robotic arraying of strains onto the device for experiments. We have applied this device for dynamic screens of a protein aggregation library; however, this methodology has the potential to enable complex and dynamic screens of yeast libraries for a wide range of applications.


Key features

• Major steps of this protocol require access to specialized equipment (i.e., microfabrication tools typically found in a cleanroom facility and an array pinning robot).

• Construction of microfluidic devices with multiple different feature heights using photolithography and soft lithography with PDMS.

• Robotic spotting of up to 48 different yeast strains onto microfluidic devices.

0 Q&A 1119 Views Nov 20, 2023

Rapid development in single-cell chromosome conformation capture technologies has provided valuable insights into the importance of spatial genome architecture for gene regulation. However, a long-standing technical gap remains in the simultaneous characterization of three-dimensional genomes and transcriptomes in the same cell. We have described an assay named Hi-C and RNA-seq employed simultaneously (HiRES), which integrates in situ reverse transcription and chromosome conformation capture (3C) for the parallel analysis of chromatin organization and gene expression. Here, we provide a detailed implementation of the assay, using mouse embryos and cerebral cortices as examples. The versatility of this method extends beyond these two samples, with the potential to be used in various other cell types.


Key features

• A multi-omics sequencing approach to profile 3D genome structure and gene expression simultaneously in single cells.

• Compatible with animal tissues.

• One-tube amplification of both DNA and RNA components.

• Requires three days to complete.


Graphical overview



Schematic illustration for the Hi-C and RNA-seq employed simultaneously (HiRES) workflow
0 Q&A 683 Views Nov 5, 2023

High-throughput molecular screening of microbial colonies and DNA libraries are critical procedures that enable applications such as directed evolution, functional genomics, microbial identification, and creation of engineered microbial strains to produce high-value molecules. A promising chemical screening approach is the measurement of products directly from microbial colonies via optically guided matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). Measuring the compounds from microbial colonies bypasses liquid culture with a screen that takes approximately 5 s per sample. We describe a protocol combining a dedicated informatics pipeline and sample preparation method that can prepare up to 3,000 colonies in under 3 h. The screening protocol starts from colonies grown on Petri dishes and then transferred onto MALDI plates via imprinting. The target plate with the colonies is imaged by a flatbed scanner and the colonies are located via custom software. The target plate is coated with MALDI matrix, MALDI-MS analyzes the colony locations, and data analysis enables the determination of colonies with the desired biochemical properties. This workflow screens thousands of colonies per day without requiring additional automation. The wide chemical coverage and the high sensitivity of MALDI-MS enable diverse screening projects such as modifying enzymes and functional genomics surveys of gene activation/inhibition libraries.


Key features

• Mass spectrometry analyzes a range of compounds from E. coli colonies as a proxy for liquid culture testing enzyme mutant libraries.

• Colonies are transferred to a MALDI target plate by a simple imprinting method.

• The screen compares the ratio among several products or searches for the qualitative presence of specific compounds.

• The protocol requires a MALDI mass spectrometer.


Graphical overview

Overview of the MALDI-MS analysis of microbial colonies for screening mutant libraries. Microbial cells containing a mutant library for enzymes/metabolic pathways are first grown in agar. The colonies are then imprinted onto a MALDI target plate using a filter paper intermediate. An optical image of the MALDI target plate is analyzed by custom software to find the locations of individual colonies and direct subsequent MALDI-MS analyses to the selected colonies. After applying MALDI matrix onto the target plate, MALDI-MS analysis of the colonies is performed. Colonies showing the desired product profiles are found by data analysis via the software, and the colonies are picked for downstream analysis.




We use cookies on this site to enhance your user experience. By using our website, you are agreeing to allow the storage of cookies on your computer.